Skip to main content
Log in

The effect of silica nanoparticles on polysulfone–polyethylene glycol (PSF/PEG) composite membrane on gas separation and rheological properties of nanocomposites

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Currently, composite membranes play a significant role in the separation of acidic gases. Inorganic nanoparticles are used in these composite membranes to enhance the thermal and chemical properties of composites. In this study, polysulfone–polyethylene glycol/silica (PSF–PEG/silica) nanocomposite membranes were investigated for the purpose of improvement of the N2, O2, CH4 and CO2 separation properties. The results of gas permeability in nanocomposite membranes showed that the PSF/PEG 10,000 membrane, with 20 wt% of silica, provided the best gas separation properties. CO2 permeability in the nanocomposite membrane with 20 wt% of silica was 13.36 Barrer. In addition, the ideal selectivity for CO2/N2 paired gases in this membrane was 45.76, which was higher than the values obtained in the pure PSF membrane and the composite membrane with 20 wt% PEG 10,000. In addition, scanning electron microscopy, infrared spectroscopy, thermal gravimetric analysis, X-ray diffraction, differential scanning calorimetry and a tensile strength test were all used to examine the membrane structure and morphology of the nanocomposite. Finally, mechanical rheometry was used to study the rheological properties of hybrid nanosized composites and the effect of nanoparticle percentage on them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Ahn J, Chung W-J, Pinnau I, Guiver M (2008) Polysulfone/silica nanoparticle mixed-matrix membranes for gas separation. J Membr Sci 314(1):123–133

    Article  CAS  Google Scholar 

  2. Arya A, Sharma A (2018) Effect of Salt concentration on dielectric properties of Li-ion conducting blend polymer electrolytes. J Mater Sci: Mater Electron. https://doi.org/10.1007/s10854-018-9905-3

    Article  Google Scholar 

  3. Basu S, Odena A, Vankelecom I (2010) Asymmetric matrimid®/[Cu3(BTC)2] mixed-matrix membranes for gas separations. J Membr Sci 362:478–487. https://doi.org/10.1016/j.memsci.2010.07.005

    Article  CAS  Google Scholar 

  4. Bicerano J, Douglas JF, Brune DA (1999) Model for the viscosity of particle dispersions. J Macromol Sci Part C 39(4):561–642

    Article  Google Scholar 

  5. Bos A, Pünt I, Wessling M, Strathmann H (1999) CO2-induced plasticization phenomena in glassy polymers. J Membr Sci 155:67–78

    Article  CAS  Google Scholar 

  6. Cassagnau P (2008) Melt rheology of organoclay and fumed silica nanocomposites. Polymer 49:2183–2196

    Article  CAS  Google Scholar 

  7. Cassagnau P, Melis F (2003) Non-linear viscoelastic behaviour and modulus recovery in silica filled polymers. Polymer 44:6607–6615

    Article  CAS  Google Scholar 

  8. Chiou JS, Maeda Y, Paul DR (1987) Gas permeation in polyethersulfone. J Appl Polym Sci 33:1823–1828. https://doi.org/10.1002/app.1987.070330533

    Article  CAS  Google Scholar 

  9. Corrado T, Guo R (2020) Macromolecular design strategies toward tailoring free volume in glassy polymers for high performance gas separation membranes. Mol Syst Des Eng 5(1):22–48

    Article  CAS  Google Scholar 

  10. Dong G, Li H, Chen V (2013) Challenges and opportunities for mixed-matrix membranes for gas separation. J Mater Chem A 1:4610–4630. https://doi.org/10.1039/C3TA00927K

    Article  CAS  Google Scholar 

  11. Douglas JF, Garboczi EJ (1995) Intrinsic viscosity and the polarizability of particles having a wide range of shapes. Adv Chem Phys 91:85–154

    CAS  Google Scholar 

  12. Elias L, Fenouillot F, Majesté J-C, Alcouffe P, Cassagnau P (2008) Immiscible polymer blends stabilized with nano-silica particles: rheology and effective interfacial tension. Polymer 49:4378–4385

    Article  CAS  Google Scholar 

  13. Elias L, Fenouillot F, Majesté J-C, Cassagnau P (2007) Morphology and rheology of immiscible polymer blends filled with silica nanoparticles. Polymer 48:6029–6040

    Article  CAS  Google Scholar 

  14. Fu S-Y, Sun Z, Huang P, Li Y-Q, Hu N (2019) Some basic aspects of polymer nanocomposites: a critical review. Nano Mater Sci. https://doi.org/10.1016/j.nanoms.2019.02.006

    Article  Google Scholar 

  15. Ge L, Zhu Z, Rudolph V (2011) Enhanced gas permeability by fabricating functionalized multi-walled carbon nanotubes and polyethersulfone nanocomposite membrane. Sep Purif Technol 78:76–82

    Article  CAS  Google Scholar 

  16. Haghtalab A, Marzban R (2011) Viscoelastic properties of nanosilica-filled polypropylene in the molten state: effect of particle size. Adv Polym Technol 30:203–218

    Article  CAS  Google Scholar 

  17. Hatami A, Salahshoori I, Rashidi N, Nasirian D (2019) The effect of ZIF-90 particle in Pebax/PSF composite membrane on the transport properties of CO2, CH4 and N2 gases by molecular dynamics simulation method. Chin J Chem Eng. https://doi.org/10.1016/j.cjche.2019.12.011

    Article  Google Scholar 

  18. Heidari A, Heidari N, Godarzvand Chegini M, Amiri R, Khademi Jahromi F, Ghorbani M (2012) A new method for synthesis of nanocomposite membranes for separation of gases. Adv Sci Lett. https://doi.org/10.1166/asl.2012.2176

    Article  Google Scholar 

  19. Heidary M, Jafari SH, Khonakdar HA, Wagenknecht U, Heinrich G, Boldt R (2013) Effect of end-capped nanosilica on mechanical properties and microstructure of LLLDPE/EVA blends. J Appl Polym Sci 127:1172–1179. https://doi.org/10.1002/app.37583

    Article  CAS  Google Scholar 

  20. Hoffmann B, Dietrich C, Thomann R, Friedrich C, Mülhaupt R (2000) Morphology and rheology of polystyrene nanocomposites based upon organoclay. Macromol Rapid Commun 21:57–61

    Article  CAS  Google Scholar 

  21. Huang X, Fang X, Lu Z, Chen S (2009) Reinforcement of polysiloxane with superhydrophobic nanosilica. J Mater Sci 44:4522–4530

    Article  CAS  Google Scholar 

  22. Jeffrey DJ, Acrivos A (1976) The rheological properties of suspensions of rigid particles. AIChE J 22:417–432

    Article  CAS  Google Scholar 

  23. Jiang L, Lam Y, Tam K, Chua T, Sim G, Ang L (2005) Strengthening acrylonitrile-butadiene-styrene (ABS) with nano-sized and micron-sized calcium carbonate. Polymer 46:243–252

    Article  CAS  Google Scholar 

  24. Jiang L, Zhang J, Wolcott MP (2007) Comparison of polylactide/nano-sized calcium carbonate and polylactide/montmorillonite composites: reinforcing effects and toughening mechanisms. Polymer 48:7632–7644

    Article  CAS  Google Scholar 

  25. Jiang LY, Chung TS, Rajagopalan R (2007) Matrimid®/MgO mixed matrix membranes for pervaporation. AIChE J 53:1745–1757

    Article  CAS  Google Scholar 

  26. Joly C, Goizet S, Schrotter J-C, Sanchez Marcano J, Escoubes M (1997) Sol–gel polyimide-silica composite membrane: gas transport properties. J Membr Sci 130(1):63–74

    Article  CAS  Google Scholar 

  27. Kaniappan K, Latha S (2011) Certain investigations on the formulation and characterization of polystyrene/poly(methyl methacrylate) blends. Int J ChemTech Res 3:708–715

    CAS  Google Scholar 

  28. Khonakdar H (2015) Dynamic mechanical analysis and thermal properties of LLDPE/EVA/modified silica nanocomposites. Compos Part B Eng 76:343–353. https://doi.org/10.1016/j.compositesb.2015.02.031

    Article  CAS  Google Scholar 

  29. Khosravi T, Mosleh S, Bakhtiari O, Mohammadi T (2012) Mixed matrix membranes of Matrimid 5218 loaded with zeolite 4A for pervaporation separation of water–isopropanol mixtures. Chem Eng Res Des 90:2353–2363

    Article  CAS  Google Scholar 

  30. Kim JH, Lee YM (2001) Gas permeation properties of poly(amide-6-b-ethylene oxide)–silica hybrid membranes. J Membr Sci 193:209–225. https://doi.org/10.1016/S0376-7388(01)00514-2

    Article  CAS  Google Scholar 

  31. Li W, Karger-Kocsis J, Schlarb AK (2009) Dispersion of TiO2 particles in PET/PP/TiO2 and PET/PP/PP-g-MA/TiO2 composites prepared with different blending procedures. Macromol Mater Eng 294:582–589

    Article  CAS  Google Scholar 

  32. Li Y, Guan H-M, Chung T-S, Kulprathipanja S (2006) Effects of novel silane modification of zeolite surface on polymer chain rigidification and partial pore blockage in polyethersulfone (PES)–zeolite a mixed matrix membranes. J Membr Sci 275:17–28

    Article  CAS  Google Scholar 

  33. Lipatov YS, Nesterov A, Ignatova T, Nesterov D (2002) Effect of polymer–filler surface interactions on the phase separation in polymer blends. Polymer 43:875–880

    Article  CAS  Google Scholar 

  34. Lipatov YS, Shumsky V, Getmanchuk I, Gorbatenko A (1982) Rheology of polymer blends. Rheol Acta 21:270–279

    Article  CAS  Google Scholar 

  35. Manatunga D, de Silva R, De Silva KM (2015) Double layer approach to create durable superhydrophobicity on cotton fabric using nano silica and auxiliary non fluorinated materials. Appl Surf Sci. https://doi.org/10.1016/j.apsusc.2015.11.068

    Article  Google Scholar 

  36. Mannan HA, Mukhtar H, Murugesan T, Nasir R, Mohshim DF, Mushtaq A (2013) Recent applications of polymer blends in gas separation membranes. Chem Eng Technol 36:1838–1846. https://doi.org/10.1002/ceat.201300342

    Article  CAS  Google Scholar 

  37. Mascia L, Lavorgna M (2012) Nanostructured polymer composites by sol–gel method. Wiley encyclopedia of composites. Wiley, Hoboken. https://doi.org/10.1002/9781118097298.weoc158

    Book  Google Scholar 

  38. Meera A, Said S, Grohens Y, Thomas S (2009) Nonlinear viscoelastic behavior of silica-filled natural rubber nanocomposites. J Phys Chem C 113:17997–18002

    Article  CAS  Google Scholar 

  39. Moaddeb M, Koros WJ (1996) Effects of colloidal silica incorporation on oxygen/nitrogen separation properties of ceramic-supported 6FDA-IPDA thin films. J Membr Sci 111:283–290. https://doi.org/10.1016/0376-7388(95)00253-7

    Article  CAS  Google Scholar 

  40. Moaddeb M, Koros WJ (1997) Gas transport properties of thin polymeric membranes in the presence of silicon dioxide particles. J Membr Sci 125:143–163. https://doi.org/10.1016/S0376-7388(96)00251-7

    Article  CAS  Google Scholar 

  41. Münstedt H, Köppl T, Triebel C (2010) Viscous and elastic properties of poly (methyl methacrylate) melts filled with silica nanoparticles. Polymer 51:185–191

    Article  Google Scholar 

  42. Nasirian D, Salahshoori I, Sadeghi M, Rashidi N, Hassanzadeganroudsari M (2019) Investigation of the gas permeability properties from polysulfone/polyethylene glycol composite membrane. Polym Bull. https://doi.org/10.1007/s00289-019-03031-3

    Article  Google Scholar 

  43. Nazockdast E, Nazockdast H, Goharpey F (2008) Linear and nonlinear melt-state viscoelastic properties of polypropylene/organoclay nanocomposites. Polym Eng Sci 48:1240–1249

    Article  CAS  Google Scholar 

  44. Nistor C, Shishatskiy S, Popa M, Nunes SP (2009) Organic–inorganic CO2 selective membranes prepared by the sol–gel process separation. Sci Technol 44:3392–3411. https://doi.org/10.1080/01496390903212698

    Article  CAS  Google Scholar 

  45. Osman MA, Atallah A (2006) Effect of the particle size on the viscoelastic properties of filled polyethylene. Polymer 47:2357–2368

    Article  CAS  Google Scholar 

  46. Pandey P, Chauhan RS (2001) Membranes for gas separation. Prog Polym Sci 26:853–893. https://doi.org/10.1016/S0079-6700(01)00009-0

    Article  CAS  Google Scholar 

  47. Park HB, Lee YM (2008) Polymeric membrane materials and potential use in gas separation. Adv Membr Technol Appl. https://doi.org/10.1002/9780470276280.ch24

    Article  Google Scholar 

  48. Pourafshari Chenar M, Rajabi H, Pakizeh M, Sadeghi M, Bolverdi A (2013) Effect of solvent type on the morphology and gas permeation properties of polysulfone–silica nanocomposite membranes. J Polym Res 20:216. https://doi.org/10.1007/s10965-013-0216-3

    Article  CAS  Google Scholar 

  49. Rafiq S, Mana Z, Maulud A, Muhammad N, Maitra S (2012) Separation of CO2 from CH4 using polysulfone/polyimide silica nanocomposite membranes. Sep Purif Technol 90:162–172

    Article  CAS  Google Scholar 

  50. Rao BG, Mukherjee D, Reddy BM (2017) Chapter 1—novel approaches for preparation of nanoparticles. In: Ficai D, Grumezescu AM (eds) Nanostructures for novel therapy. Elsevier, Amsterdam, pp 1–36. https://doi.org/10.1016/b978-0-323-46142-9.00001-3

    Chapter  Google Scholar 

  51. Runt J, Huang J (2002) Chapter 8—polymer blends and copolymers. In: Cheng SZD (ed) Handbook of thermal analysis and calorimetry, vol 3. Elsevier, Amsterdam, pp 273–294. https://doi.org/10.1016/s1573-4374(02)80011-5

    Chapter  Google Scholar 

  52. Sadeghi M, Khanbabaei G, Dehaghani AHS, Sadeghi M, Aravand MA, Akbarzade M, Khatti S (2008) Gas permeation properties of ethylene vinyl acetate–silica nanocomposite membranes. J Membr Sci 322:423–428. https://doi.org/10.1016/j.memsci.2008.05.077

    Article  CAS  Google Scholar 

  53. Sadeghi M, Mehdi Talakesh M, Ghalei B, Shafiei M (2013) Preparation, characterization and gas permeation properties of a polycaprolactone based polyurethane–silica nanocomposite membrane. J Membr Sci 427:21–29. https://doi.org/10.1016/j.memsci.2012.07.036

    Article  CAS  Google Scholar 

  54. Sadeghi M, Semsarzadeh MA, Barikani M, Pourafshari Chenar M (2011) Gas separation properties of polyether-based polyurethane–silica nanocomposite membranes. J Membr Sci 376:188–195. https://doi.org/10.1016/j.memsci.2011.04.021

    Article  CAS  Google Scholar 

  55. Sadeghi M, Semsarzadeh MA, Moadel H (2009) Enhancement of the gas separation properties of polybenzimidazole (PBI) membrane by incorporation of silica nano particles. J Membr Sci 331:21–30. https://doi.org/10.1016/j.memsci.2008.12.073

    Article  CAS  Google Scholar 

  56. Saffar A, Jalali Dil E, Carreau PJ, Ajji A, Kamal MR (2016) Phase behavior of binary blends of PP/PP-g-AA: limitations of the conventional characterization techniques. Polym Int 65:508–515. https://doi.org/10.1002/pi.5082

    Article  CAS  Google Scholar 

  57. Kentish SE, Scholes CA, Stevens GW (2008) Carbon dioxide separation through polymeric membrane systems for flue gas applications. Recent Patents Chem Eng 1(1):52–66

    Article  Google Scholar 

  58. Semsarzadeh MA, Ghalei B (2012) Characterization and gas permeability of polyurethane and polyvinyl acetate blend membranes with polyethylene oxide–polypropylene oxide block copolymer. J Membr Sci 401–402:97–108. https://doi.org/10.1016/j.memsci.2012.01.035

    Article  CAS  Google Scholar 

  59. Setiawan WK, Chiang K-Y (2019) Silica applied as mixed matrix membrane inorganic filler for gas separation: a review. Sustain Environ Res 29:32

    Article  CAS  Google Scholar 

  60. Singh LP, Agarwal SK, Bhattacharyya S, Sharma U, Ahalawat S (2011) Preparation of silica nanoparticles and its beneficial role in cementitious materials. Nanomater Nanotechnol. https://doi.org/10.5772/50950

    Article  Google Scholar 

  61. Sridhar S, Smitha B, Aminabhavi TM (2007) Separation of carbon dioxide from natural gas mixtures through polymeric membranes—a review. Sep Purif Rev 36:113–174. https://doi.org/10.1080/15422110601165967

    Article  CAS  Google Scholar 

  62. Sternstein S, Zhu A-J (2002) Reinforcement mechanism of nanofilled polymer melts as elucidated by nonlinear viscoelastic behavior. Macromolecules 35:7262–7273

    Article  CAS  Google Scholar 

  63. Sun S, Li C, Zhang L, Du H, Burnell-Gray J (2006) Effects of surface modification of fumed silica on interfacial structures and mechanical properties of poly (vinyl chloride) composites. Eur Polym J 42:1643–1652

    Article  CAS  Google Scholar 

  64. Thareja P, Velankar S (2008) Rheology of immiscible blends with particle-induced drop clusters. Rheol Acta 47:189–200

    Article  CAS  Google Scholar 

  65. Uemura T et al (2015) Mixing of immiscible polymers using nanoporous coordination templates. Nat Commun 6:7473. https://doi.org/10.1038/ncomms8473

    Article  PubMed  PubMed Central  Google Scholar 

  66. Yang H-C, Hou J, Chen V, Xu Z-K (2016) Surface and interface engineering for organic–inorganic composite membranes. J Mater Chem A 4:9716–9729. https://doi.org/10.1039/C6TA02844F

    Article  CAS  Google Scholar 

  67. Yang H et al (2008) Rheology and phase structure of PP/EPDM/SiO2 ternary composites. Eur Polym J 44:113–123

    Article  CAS  Google Scholar 

  68. Yao X et al (2009) Interface structure of poly (ethylene terephthalate)/silica nanocomposites. Polymer 50:1251–1256

    Article  CAS  Google Scholar 

  69. Zhang Q, Archer LA (2002) Poly (ethylene oxide)/silica nanocomposites: structure and rheology. Langmuir 18:10435–10442

    Article  CAS  Google Scholar 

  70. Zhong Y, Wang S-Q (2003) Exfoliation and yield behavior in nanodispersions of organically modified montmorillonite clay. J Rheol 47:483–495

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Dr. M. Sadeghi (Isfahan University of Technology, Chemical Engineering Faculty, Isfahan, Iran) for encouraging them to carry out the work.

Funding

No funding source was available for this research.

Author information

Authors and Affiliations

Authors

Contributions

Iman Salahshoori, Ali Hatami contributed to conceptualization and methodology; Danial Nasirian, Iman Salahshoori, Niloufar Rashidi, Majid Hassanzadeganroudsari contributed to formal analysis and investigation; Niloufar Rashidi, Iman Salahshoori helped in writing—original draft preparation; Md Kamal Hossain, Ali Hatami contributed to writing—review, data analysis and editing; Majid Hassanzadeganroudsari helped in resources, supervision and writing—review and editing.

Corresponding author

Correspondence to Majid Hassanzadeganroudsari.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salahshoori, I., Nasirian, D., Rashidi, N. et al. The effect of silica nanoparticles on polysulfone–polyethylene glycol (PSF/PEG) composite membrane on gas separation and rheological properties of nanocomposites. Polym. Bull. 78, 3227–3258 (2021). https://doi.org/10.1007/s00289-020-03255-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-020-03255-8

Keywords

Navigation