Skip to main content
Log in

Preparation of nanogels based on kappa-carrageenan/chitosan and N-doped carbon dots: study of drug delivery behavior

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In this study, new pH-sensitive nanogels containing rivastigmine as a model drug were synthesized by graft polymerization of Acrylamid/Sodium Acrylate monomers onto chitosan (CS) and kappa-carrageenan (CG or κ-carrageenan) backbone in the presence of N, N'-Methylenebisacrylamide (MBA) as cross-linker, nitrogen-doped carbon dots (N-CDs) and ammonium persulfate as an initiator. The prepared nanogels were characterized by FE-SEM, XRD, FTIR, EDX and TGA techniques. The swelling behavior of the nanogels was affected by MBA content, monomer content, amount of CG or CS, and pH in the synthesis. The nanogels exhibited well pH-sensitivity during drug release investigation under simulated gastric (< 61% at pH 1.2) and intestinal (~ 95% at pH 7.4) media. The cytotoxicity test was investigated on human fibroblast cells using MTT assay. The results indicated that cell survival rate was more than 88% in < 62.5 μg/mL concentration of nanogels. Incorporating of N-CDs in the nanogel network increased the swelling capacity, entrapment efficiency, and ensuring the controlled release of the entrapped drug. In this work, we were able to enhance the properties of drug-loaded chitosan nanogels in pH 7.4.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wang H, Ke F, Mararenko A, Wei Z, Banerjee P, Zhou S (2014) Responsive polymer–fluorescent carbon nanoparticle hybrid nanogels for optical temperature sensing, near-infrared light-responsive drug release, and tumor cell imaging. Nanoscale 6(13):7443–7452. https://doi.org/10.1039/C4NR01030B

    Article  CAS  PubMed  Google Scholar 

  2. Rashidzadeh A, Olad A, Hejazi MJ (2017) Controlled release systems based on intercalated paraquat onto montmorillonite and clinoptilolite clays encapsulated with sodium alginate. Adv Polym Technol 36(2):177–185. https://doi.org/10.1002/adv.21597

    Article  CAS  Google Scholar 

  3. Rashidzadeh A, Olad A, Salari D, Reyhanitabar A (2014) On the preparation and swelling properties of hydrogel nanocomposite based on sodium alginate-g-poly (acrylic acid-co-acrylamide)/clinoptilolite and its application as slow release fertilizer. J Polym Res 21(2):344. https://doi.org/10.1007/s10965-013-0344-9

    Article  CAS  Google Scholar 

  4. Badakhshanian E, Hemmati K, Ghaemy M (2016) Enhancement of mechanical properties of nanohydrogels based on natural gum with functionalized multiwall carbon nanotube: study of swelling and drug release. Polymer 90:282–289. https://doi.org/10.1016/j.polymer.2016.03.028

    Article  CAS  Google Scholar 

  5. Dash R, Foston M, Ragauskas AJ (2013) Improving the mechanical and thermal properties of gelatin hydrogels cross-linked by cellulose nanowhiskers. Carbohydr Polym 91(2):638–645. https://doi.org/10.1016/j.carbpol.2012.08.080

    Article  CAS  PubMed  Google Scholar 

  6. Yang Y, Hu Q, Zhang Q, Jiang K, Lin W, Yang Y, Cui Y, Qian G (2016) A large capacity cationic metal–organic framework nanocarrier for physiological pH responsive drug delivery. Mol Pharm 13(8):2782–2786. https://doi.org/10.1021/acs.molpharmaceut.6b00374

    Article  CAS  PubMed  Google Scholar 

  7. Mahdavinia GR, Rahmani Z, Karami S, Pourjavadi A (2014) Magnetic/pH-sensitive κ-carrageenan/sodium alginate hydrogel nanocomposite beads: preparation, swelling behavior, and drug delivery. J Biomater Sci Polym Ed 25(17):1891–1906. https://doi.org/10.1080/09205063.2014.956166

    Article  CAS  PubMed  Google Scholar 

  8. Azhar FF, Shahbazpour E, Olad A (2017) pH sensitive and controlled release system based on cellulose nanofibers-poly vinyl alcohol hydrogels for cisplatin delivery. Fibers Polym 18(3):416–423. https://doi.org/10.1007/s12221-017-6958-5

    Article  CAS  Google Scholar 

  9. Posocco B, Dreussi E, De Santa J, Toffoli G, Abrami M, Musiani F, Grassi M, Farra R, Tonon F, Grassi G (2015) Polysaccharides for the delivery of antitumor drugs. Materials 8(5):2569–2615. https://doi.org/10.3390/ma8052569

    Article  CAS  PubMed Central  Google Scholar 

  10. Wang X, Cao L, Lu F, Meziani MJ, Li H, Qi G, Zhou B, Harruff BA, Kermarrec F, Sun Y-P (2009) Photoinduced electron transfers with carbon dots. Chem Comm 25:3774–3776. https://doi.org/10.1039/B906252A

    Article  Google Scholar 

  11. Yang S-T, Cao L, Luo PG, Lu F, Wang X, Wang H, Meziani MJ, Liu Y, Qi G, Sun Y-P (2009) Carbon dots for optical imaging in vivo. J Am Chem Soc 131(32):11308–11309. https://doi.org/10.1021/ja904843x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nie H, Li M, Li Q, Liang S, Tan Y, Sheng L, Shi W, Zhang SX-A (2014) Carbon dots with continuously tunable full-color emission and their application in ratiometric pH sensing. Chem Mater 26(10):3104–3112. https://doi.org/10.1021/cm5003669

    Article  CAS  Google Scholar 

  13. Jelinek R (2017) Bioimaging applications of carbon-dots. In: Araujo P (ed) Carbon quantum dots. Springer, Tuscaloosa, AL, pp 61–70

    Chapter  Google Scholar 

  14. Shen J, Shang S, Chen X, Wang D, Cai Y (2017) Highly fluorescent N, S-co-doped carbon dots and their potential applications as antioxidants and sensitive probes for Cr (VI) detection. Sens Actuators B Chem 248:92–100. https://doi.org/10.1016/j.snb.2017.03.123

    Article  CAS  Google Scholar 

  15. Chen P, Wang F, Chen Z-F, Zhang Q, Su Y, Shen L, Yao K, Liu Y, Cai Z, Lv W (2017) Study on the photocatalytic mechanism and detoxicity of gemfibrozil by a sunlight-driven TiO 2/carbon dots photocatalyst: The significant roles of reactive oxygen species. Appl Catal B Environ 204:250–259. https://doi.org/10.1016/j.apcatb.2016.11.040

    Article  CAS  Google Scholar 

  16. Yuan F, Wang Z, Li X, Li Y, Tan ZA, Fan L, Yang S (2017) bright multicolor bandgap fluorescent carbon quantum dots for electroluminescent light-emitting diodes. Adv Mater 29(3):1604436. https://doi.org/10.1002/adma.201604436

    Article  CAS  Google Scholar 

  17. Li X, Rui M, Song J, Shen Z, Zeng H (2015) Carbon and graphene quantum dots for optoelectronic and energy devices: a review. Adv Funct Mater 25(31):4929–4947. https://doi.org/10.1002/adfm.201501250

    Article  CAS  Google Scholar 

  18. Wang Q, Huang X, Long Y, Wang X, Zhang H, Zhu R, Liang L, Teng P, Zheng H (2013) Hollow luminescent carbon dots for drug delivery. Carbon 59:192–199. https://doi.org/10.1016/j.carbon.2013.03.009

    Article  CAS  Google Scholar 

  19. Bhunia SK, Saha A, Maity AR, Ray SC, Jana NR (2013) Carbon nanoparticle-based fluorescent bioimaging probes. Sci Rep 3:1473–1479. https://doi.org/10.1038/srep01473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hu S, Zhao Q, Dong Y, Yang J, Liu J, Chang Q (2013) Carbon-dot-loaded alginate gels as recoverable probes: Fabrication and mechanism of fluorescent detection. Langmuir 29(40):12615–12621. https://doi.org/10.1021/la402647t

    Article  CAS  PubMed  Google Scholar 

  21. Zhou L, Lin Y, Huang Z, Ren J, Qu X (2012) Carbon nanodots as fluorescence probes for rapid, sensitive, and label-free detection of Hg 2+ and biothiols in complex matrices. Chem Commun 48(8):1147–1149. https://doi.org/10.1039/C2CC16791C

    Article  CAS  Google Scholar 

  22. Khlebtsov N, Dykman L (2011) Biodistribution and toxicity of engineered gold nanoparticles: a review of in vitro and in vivo studies. Chem Soc Rev 40(3):1647–1671. https://doi.org/10.1039/C0CS00018C

    Article  CAS  PubMed  Google Scholar 

  23. Majumdar S, Krishnatreya G, Gogoi N, Thakur D, Chowdhury D (2016) Carbon-dot-coated alginate beads as a smart stimuli-responsive drug delivery system. ACS Appl Mater 8(50):34179–34184. https://doi.org/10.1021/acsami.6b10914

    Article  CAS  Google Scholar 

  24. Rahmani Z, Ghaemy M (2019) One-step hydrothermal-assisted synthesis of highly fluorescent N-doped carbon dots from gum tragacanth: Luminescent stability and sensitive probe for Au3+ ions. Opt Mater 97:109356. https://doi.org/10.1016/j.optmat.2019.109356

    Article  CAS  Google Scholar 

  25. Rahmani Z, Sahraei R, Ghaemy M (2018) Preparation of spherical porous hydrogel beads based on ion-crosslinked gum tragacanth and graphene oxide: Study of drug delivery behavior. Carbohydr Polym 194:34–42. https://doi.org/10.1016/j.carbpol.2018.04.022

    Article  CAS  PubMed  Google Scholar 

  26. Patel KC, Goli D (2016) Formulation preparation, characterization, optimization, behavior and histological evaluation of brain hippocampus for brain targeted PLGA-Soya lecithin-tween 80 nanoparticles in an Alzheimer’s disease model. Der Pharm Lett 8(1):102–120

    Google Scholar 

  27. Hosseini MS, Hemmati K, Ghaemy M (2016) Synthesis of nanohydrogels based on tragacanth gum biopolymer and investigation of swelling and drug delivery. Int J Biol Macromol 82:806–815. https://doi.org/10.1016/j.ijbiomac.2015.09.067

    Article  CAS  Google Scholar 

  28. Sahraei R, Pour ZS, Ghaemy M (2017) Novel magnetic bio-sorbent hydrogel beads based on modified gum tragacanth/graphene oxide: removal of heavy metals and dyes from water. J Clean Prod 142:2973–2984. https://doi.org/10.1016/j.jclepro.2016.10.170

    Article  CAS  Google Scholar 

  29. Piao Y, Chen B (2017) Synthesis and mechanical properties of double cross-linked gelatin-graphene oxide hydrogels. Int J Biol Macromol 101:791–798. https://doi.org/10.1016/j.ijbiomac.2017.03.155

    Article  CAS  PubMed  Google Scholar 

  30. Liu L, Fishman ML, Kost J, Hicks KB (2003) Pectin-based systems for colon-specific drug delivery via oral route. Biomaterials 24(19):3333–3343. https://doi.org/10.1016/S0142-9612(03)00213-8

    Article  CAS  PubMed  Google Scholar 

  31. Li L, Wang L, Shao Y, Ni R, Zhang T, Mao S (2013) Drug release characteristics from chitosan–alginate matrix tablets based on the theory of self-assembled film. Int J Pharm 450(1–2):197–207. https://doi.org/10.1016/j.ijpharm.2013.04.052

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Olad.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahmani, Z., Ghaemy, M. & Olad, A. Preparation of nanogels based on kappa-carrageenan/chitosan and N-doped carbon dots: study of drug delivery behavior. Polym. Bull. 78, 2709–2726 (2021). https://doi.org/10.1007/s00289-020-03236-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-020-03236-x

Keywords

Navigation