Skip to main content
Log in

Impact of the molecular weight on the size of chitosan nanoparticles: characterization and its solid-state application

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Chitosan nanoparticles (CSNPSs) were prepared from noncommercial chitosan of different molecular weights by the ionic gelation methodology. CSNPSs were applied in solid state (g) to observe the bacterial growth of Bacillus halotolerans MCC1, bacteria that appear in the biofilms of the desalinization membranes. Characterization of CSNPS of high (CSNP2), medium (CSNP3), and low (CSNP4) molecular weight (MW) was studied by TGA, DSC, SEM, EDX, DLS, and XRD. The effect of MW onto the formation of CSNPS was investigated as well as the effect of its application (0.01, 0.03, and 0.03 g at 24, 48, and 72 h) in the growth (%) of B. halotolerans MCC1. The results showed that the average size of CSNPS was in the range of 420–600.3 nm. CSNPS were considered amorphous and less thermally stable than the original chitosan where they were produced. Morphologically when the MW decreases, a reduction in the size of the particle was exhibited. When MW increase a reduction in the zeta potential from 45.7 to 29.9 mV was resulted. The essays to observe the growth (%) of B. halotolerans MCC1 indicated that CSNPS applied in solid state allows the growth of the bacteria; when the MW decreases, the growth of the bacteria increases. The maximum and minimum value of growth was obtained at 72 h, with the use of 0.05 g of CSNP4 (16.86%) and 0.05 g of CSNP2 (2.15%), respectively. The use of CSNPS indicates that the inhibitory effect depends on the MW as well as the doses of application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kowalonek J (2017) Studies of chitosan/pectin complexes exposed to UV radiation. Int J Biol Macromol 103:515–524. https://doi.org/10.1016/j.ijbiomac.2017.05.081

    Article  CAS  PubMed  Google Scholar 

  2. Sun Z, Shi C, Wang X, Fang Q, Huang J (2017) Synthesis, characterization, and antimicrobial activities of sulfonated chitosan. Carbohydr Polym 155:321–328. https://doi.org/10.1016/j.carbpol.2016.08.069

    Article  CAS  PubMed  Google Scholar 

  3. Zeng D, Wu J, Kennedy JF (2008) Application of a chitosan flocculant to water treatment. Carbohydr Polym 71(1):135–139. https://doi.org/10.1016/j.carbpol.2007.07.039

    Article  CAS  Google Scholar 

  4. Huang R, Liu Q, Huo J, Yang B (2017) Adsorption of methyl orange onto protonated cross-linked chitosan. Arab J Chem 10(1):24–32. https://doi.org/10.1016/j.arabjc.2013.05.017

    Article  CAS  Google Scholar 

  5. Ahmed S, Ikram S (2016) Chitosan based scaffolds and their applications in wound healing. Achiev Life Sci 10(1):27–37. https://doi.org/10.1016/j.als.2016.04.001

    Article  Google Scholar 

  6. Park BK, Kim M-M (2010) Applications of chitin and its derivatives in biological medicine. Int J Mol Sci. https://doi.org/10.3390/ijms11125152

    Article  PubMed  PubMed Central  Google Scholar 

  7. Pant A, Negi JS (2018) Novel controlled ionic gelation strategy for chitosan nanoparticles preparation using TPP-β-CD inclusion complex. Eur J Pharm Sci 112:180–185. https://doi.org/10.1016/j.ejps.2017.11.020

    Article  CAS  PubMed  Google Scholar 

  8. Kim H, Lee E, Lee I-H, Lee J, Kim J, Kim S, Lee Y, Kim D, Choi M, Kim Y-C, Jon S (2014) Preparation and therapeutic evaluation of paclitaxel-conjugated low-molecular-weight chitosan nanoparticles. Macromol Res 22(8):805–808. https://doi.org/10.1007/s13233-014-2118-6

    Article  CAS  Google Scholar 

  9. Rampino A, Borgogna M, Bellich B, Blasi P, Virgilio F, Cesàro A (2016) Chitosan-pectin hybrid nanoparticles prepared by coating and blending techniques. Eur J Pharm Sci 84:37–45. https://doi.org/10.1016/j.ejps.2016.01.004

    Article  CAS  PubMed  Google Scholar 

  10. Yang H-C, Hon M-H (2009) The effect of the molecular weight of chitosan nanoparticles and its application on drug delivery. Microchem J 92(1):87–91. https://doi.org/10.1016/j.microc.2009.02.001

    Article  CAS  Google Scholar 

  11. Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31(7):603–632. https://doi.org/10.1016/j.progpolymsci.2006.06.001

    Article  CAS  Google Scholar 

  12. Hejjaji EMA, Smith AM, Morris GA (2018) Evaluation of the mucoadhesive properties of chitosan nanoparticles prepared using different chitosan to tripolyphosphate (CS:TPP) ratios. Int J Biol Macromol 120:1610–1617. https://doi.org/10.1016/j.ijbiomac.2018.09.185

    Article  CAS  PubMed  Google Scholar 

  13. Lallana E, Rios de la Rosa JM, Tirella A, Pelliccia M, Gennari A, Stratford IJ, Puri S, Ashford M, Tirelli N (2017) Chitosan/hyaluronic acid nanoparticles: rational design revisited for RNA delivery. Mol Pharm 14(7):2422–2436. https://doi.org/10.1021/acs.molpharmaceut.7b00320

    Article  CAS  PubMed  Google Scholar 

  14. Tsai L-C, Tsai M-L, Lu K-Y, Mi F-L (2018) Synthesis and evaluation of antibacterial and anti-oxidant activity of small molecular chitosan–fucoidan conjugate nanoparticles. Res Chem Intermed 44(8):4855–4871. https://doi.org/10.1007/s11164-018-3341-0

    Article  CAS  Google Scholar 

  15. Sarwar A, Katas H, Zin NM (2014) Antibacterial effects of chitosan–tripolyphosphate nanoparticles: impact of particle size molecular weight. J Nanopart Res 16(7):2517. https://doi.org/10.1007/s11051-014-2517-9

    Article  CAS  Google Scholar 

  16. Mohammadi A, Hashemi M, Masoud Hosseini S (2016) Effect of chitosan molecular weight as micro and nanoparticles on antibacterial activity against some soft rot pathogenic bacteria. LWT Food Sci Technol 71:347–355. https://doi.org/10.1016/j.lwt.2016.04.010

    Article  CAS  Google Scholar 

  17. O'Callaghan KAM, Kerry JP (2016) Preparation of low- and medium-molecular weight chitosan nanoparticles and their antimicrobial evaluation against a panel of microorganisms, including cheese-derived cultures. Food Control 69:256–261. https://doi.org/10.1016/j.foodcont.2016.05.005

    Article  CAS  Google Scholar 

  18. Ngan LTK, Wang S-L, Hiep ĐM, Luong PM, Vui NT, Đinh TM, Dzung NA (2014) Preparation of chitosan nanoparticles by spray drying, and their antibacterial activity. Res Chem Intermed 40(6):2165–2175. https://doi.org/10.1007/s11164-014-1594-9

    Article  CAS  Google Scholar 

  19. Kim H-S, Lee JY, Ham S-Y, Lee JH, Park J-H, Park H-D (2019) Effect of biofilm inhibitor on biofouling resistance in RO processes. Fuel 253:823–832. https://doi.org/10.1016/j.fuel.2019.05.062

    Article  CAS  Google Scholar 

  20. Romero-López GE, Alvarez-Sánchez J, de los Santos-Villalobos S, Fimbres-Weihs GA (2017) Biofouling studies on thin film composite membranes for reverse osmosis desalination processes. In: Maciel-Cerda A (ed) Membranes: materials, simulations, and applications. Springer, Cham, pp 99–104

    Chapter  Google Scholar 

  21. Armendáriz-Ontiveros MM, García García A, de los Santos Villalobos S, Fimbres Weihs GA (2019) Biofouling performance of RO membranes coated with Iron NPs on graphene oxide. Desalination 451:45–58. https://doi.org/10.1016/j.desal.2018.07.005

    Article  CAS  Google Scholar 

  22. Armendáriz-Ontiveros MM, Fimbres Weihs AG, de los Santos Villalobos S, Salinas-Rodriguez GS (2019) Biofouling of FeNP-coated SWRO membranes with bacteria isolated after pre-treatment in the sea of Cortez. Coatings. https://dx.doi.org/10.3390/coatings9070462

  23. Sánchez-Duarte RG, Sánchez-Machado DI, López-Cervantes J, Correa-Murrieta MA (2012) Adsorption of allura red dye by cross-linked chitosan from shrimp waste. Water Sci Technol 65(4):618–623. https://doi.org/10.2166/wst.2012.900

    Article  CAS  PubMed  Google Scholar 

  24. Masuelli MA (2014) Mark–Houwink parameters for aqueous-soluble polymers and biopolymers at various temperatures. JPBPC 2(2):37–43. https://dx.doi.org/10.12691/jpbpc-2-2-2

  25. Villegas-Peralta Y, Correa-Murrieta MA, Meza-Escalante ER, Flores-Aquino E, Álvarez-Sánchez J, Sánchez-Duarte RG (2019) Effect of the preparation method in the size of chitosan nanoparticles for the removal of allura red dye. Polym Bull 76(9):4415–4430. https://doi.org/10.1007/s00289-018-2601-x

    Article  CAS  Google Scholar 

  26. Facchi SP, Scariot DB, Bueno PVA, Souza PR, Figueiredo LC, Follmann HDM, Nunes CS, Monteiro JP, Bonafé EG, Nakamura CV, Muniz EC, Martins AF (2016) Preparation and cytotoxicity of N-modified chitosan nanoparticles applied in curcumin delivery. Int J Biol Macromol 87:237–245. https://doi.org/10.1016/j.ijbiomac.2016.02.063

    Article  CAS  PubMed  Google Scholar 

  27. Thandapani G, Prasad P, Sudha PN, Sukumaran A (2017) Size optimization and in vitro biocompatibility studies of chitosan nanoparticles. Int J Biol Macromol 104:1794–1806. https://doi.org/10.1016/j.ijbiomac.2017.08.057

    Article  CAS  PubMed  Google Scholar 

  28. Dhawade PP, Jagtap RN (2012) Characterization of the glass transition temperature of chitosan and its oligomers by temperature modulated differential scanning calorimetry. Adv Appl Sci Res 3(3):1372–1382

    CAS  Google Scholar 

  29. Bhumkar DR, Pokharkar VB (2006) Studies on effect of pH on cross-linking of chitosan with sodium tripolyphosphate: a technical note. AAPS PharmSciTech 7(2):E50–E50. https://doi.org/10.1208/pt070250

    Article  PubMed  Google Scholar 

  30. Dananjaya SHS, Erandani WKCU, Kim C-H, Nikapitiya C, Lee J, De Zoysa M (2017) Comparative study on antifungal activities of chitosan nanoparticles and chitosan silver nano composites against Fusarium oxysporum species complex. Int J Biol Macromol 105:478–488. https://doi.org/10.1016/j.ijbiomac.2017.07.056

    Article  CAS  PubMed  Google Scholar 

  31. Kamel KM, Khalil IA, Rateb ME, Elgendy H, Elhawary S (2017) Chitosan-coated cinnamon/oregano-loaded solid lipid nanoparticles to augment 5-fluorouracil cytotoxicity for colorectal cancer: extract standardization, nanoparticle optimization, and cytotoxicity evaluation. J Agric Food Chem 65(36):7966–7981. https://doi.org/10.1021/acs.jafc.7b03093

    Article  CAS  PubMed  Google Scholar 

  32. Pereira AES, Silva PM, Oliveira JL, Oliveira HC, Fraceto LF (2017) Chitosan nanoparticles as carrier systems for the plant growth hormone gibberellic acid. Colloid Surface B 150:141–152. https://doi.org/10.1016/j.colsurfb.2016.11.027

    Article  CAS  Google Scholar 

  33. Hajj Ali H, Michaux F, Khanji AN, Jasniewski J, Linder M (2018) Chitosan—Shea butter solid nanoparticles assemblies for the preparation of a novel nanoparticles in microparticles system containing curcumin. Colloids Surfaces A 553:359–367. https://doi.org/10.1016/j.colsurfa.2018.05.075

    Article  CAS  Google Scholar 

  34. Hashad RA, Ishak RAH, Fahmy S, Mansour S, Geneidi AS (2016) Chitosan-tripolyphosphate nanoparticles: optimization of formulation parameters for improving process yield at a novel pH using artificial neural networks. Int J Biol Macromol 86:50–58. https://doi.org/10.1016/j.ijbiomac.2016.01.042

    Article  CAS  PubMed  Google Scholar 

  35. Ko JA, Park HJ, Hwang SJ, Park JB, Lee JS (2002) Preparation and characterization of chitosan microparticles intended for controlled drug delivery. Int J Pharm 249(1):165–174. https://doi.org/10.1016/S0378-5173(02)00487-8

    Article  CAS  PubMed  Google Scholar 

  36. Uppal S, Kaur K, Kumar R, Kaur ND, Shukla G, Mehta SK (2018) Chitosan nanoparticles as a biocompatible and efficient nanowagon for benzyl isothiocyanate. Int J Biol Macromol 115:18–28. https://doi.org/10.1016/j.ijbiomac.2018.04.036

    Article  CAS  PubMed  Google Scholar 

  37. MubarakAli D, LewisOscar F, Gopinath V, Alharbi NS, Alharbi SA, Thajuddin N (2018) An inhibitory action of chitosan nanoparticles against pathogenic bacteria and fungi and their potential applications as biocompatible antioxidants. Microb Pathog 114:323–327. https://doi.org/10.1016/j.micpath.2017.11.043

    Article  CAS  PubMed  Google Scholar 

  38. Ma J, Fu K, Shi J, Sun Y, Zhang X, Ding L (2016) Ultraviolet-assisted synthesis of polyacrylamide-grafted chitosan nanoparticles and flocculation performance. Carbohydr Polym 151:565–575. https://doi.org/10.1016/j.carbpol.2016.06.002

    Article  CAS  PubMed  Google Scholar 

  39. Rodríguez Hamamura N, Valderrama Negrón A, Alarcón Cavero H, López Milla A (2010) Preparación de partículas de quitosano reticuladas con tripolifosfato y modificadas con polietilenglicol. Rev Soc Quím Perú 76:336–354

    Google Scholar 

  40. Fan W, Yan W, Xu Z, Ni H (2012) Formation mechanism of monodisperse, low molecular weight chitosan nanoparticles by ionic gelation technique. Colloids Surface B 90:21–27. https://doi.org/10.1016/j.colsurfb.2011.09.042

    Article  CAS  Google Scholar 

  41. Fang N, Chan V, Mao H-Q, Leong KW (2001) Interactions of phospholipid bilayer with chitosan: effect of molecular weight and pH. Biomacromolecules 2(4):1161–1168. https://doi.org/10.1021/bm015548s

    Article  CAS  PubMed  Google Scholar 

  42. Gupta KC, Jabrail FH (2006) Effects of degree of deacetylation and cross-linking on physical characteristics, swelling and release behavior of chitosan microspheres. Carbohydr Polym 66(1):43–54. https://doi.org/10.1016/j.carbpol.2006.02.019

    Article  CAS  Google Scholar 

  43. Maguire CM, Rösslein M, Wick P, Prina-Mello A (2018) Characterisation of particles in solution—a perspective on light scattering and comparative technologies. Sci Technol Adv Mat 19(1):732–745. https://doi.org/10.1080/14686996.2018.1517587

    Article  CAS  Google Scholar 

  44. Taghizadeh MT, Bahadori A (2013) Preparation, characterization and adhesive properties of di- and tri-hydroxy benzoyl chitosan nanoparticles. Chin J Polym Sci 31(4):649–659. https://doi.org/10.1007/s10118-013-1247-2

    Article  CAS  Google Scholar 

  45. Muthukrishnan S, Murugan I, Selvaraj M (2019) Chitosan nanoparticles loaded with thiamine stimulate growth and enhances protection against wilt disease in Chickpea. Carbohydr Polym 212:169–177. https://doi.org/10.1016/j.carbpol.2019.02.037

    Article  CAS  PubMed  Google Scholar 

  46. Li F, Jin H, Xiao J, Yin X, Liu X, Li D, Huang Q (2018) The simultaneous loading of catechin and quercetin on chitosan-based nanoparticles as effective antioxidant and antibacterial agent. Food Res Int 111:351–360. https://doi.org/10.1016/j.foodres.2018.05.038

    Article  CAS  PubMed  Google Scholar 

  47. Masarudin MJ, Cutts SM, Evison BJ, Phillips DR, Pigram PJ (2015) Factors determining the stability, size distribution, and cellular accumulation of small, monodisperse chitosan nanoparticles as candidate vectors for anticancer drug delivery: application to the passive encapsulation of [(14)C]-doxorubicin. Nanotechnol Sci Appl 8:67–80. https://doi.org/10.2147/nsa.s91785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Danaei M, Dehghankhold M, Ataei S, Hasanzadeh Davarani F, Javanmard R, Dokhani A, Khorasani S, Mozafari RM (2018) Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics. https://doi.org/10.3390/pharmaceutics10020057

    Article  PubMed  PubMed Central  Google Scholar 

  49. Subhapradha N, Shanmugam A (2017) Fabrication of β-chitosan nanoparticles and its anticancer potential against human hepatoma cells. Int J Biol Macromol 94:194–201. https://doi.org/10.1016/j.ijbiomac.2016.10.016

    Article  CAS  PubMed  Google Scholar 

  50. Hassani S, Laouini A, Fessi H, Charcosset C (2015) Preparation of chitosan–TPP nanoparticles using microengineered membranes—effect of parameters and encapsulation of tacrine. Colloid Surface A 482:34–43. https://doi.org/10.1016/j.colsurfa.2015.04.006

    Article  CAS  Google Scholar 

  51. Gupta V, Trivedi P (2018) In vitro and in vivo characterization of pharmaceutical topical nanocarriers containing anticancer drugs for skin cancer treatment. In: Grumezescu AM (ed) Lipid nanocarriers for drug targeting. William Andrew Publishing, New York, pp 563–627

    Chapter  Google Scholar 

  52. Horie M, Fujita K (2011) Toxicity of metal oxides nanoparticles. In: Fishbein JC (ed) Advances in molecular toxicology. Elsevier, Berlin, pp 145–178

    Chapter  Google Scholar 

  53. Li Q, Liu C-G, Yu Y (2015) Separation of monodisperse alginate nanoparticles and effect of particle size on transport of vitamin E. Carbohydr Polym 124:274–279. https://doi.org/10.1016/j.carbpol.2015.02.007

    Article  CAS  PubMed  Google Scholar 

  54. Khan MA, Zafaryab M, Mehdi SH, Quadri J, Rizvi MMA (2017) Characterization and carboplatin loaded chitosan nanoparticles for the chemotherapy against breast cancer in vitro studies. Int J Biol Macromol 97:115–122. https://doi.org/10.1016/j.ijbiomac.2016.12.090

    Article  CAS  PubMed  Google Scholar 

  55. Du Z, Liu J, Zhang T, Yu Y, Zhang Y, Zhai J, Huang H, Wei S, Ding L, Liu B (2019) A study on the preparation of chitosan-tripolyphosphate nanoparticles and its entrapment mechanism for egg white derived peptides. Food Chem 286:530–536. https://doi.org/10.1016/j.foodchem.2019.02.012

    Article  CAS  PubMed  Google Scholar 

  56. Gonil P, Sajomsang W, Ruktanonchai UR, Na Ubol P, Treetong A, Opanasopit P, Puttipipatkhachorn S (2014) Synthesis and fluorescence properties of N-substituted 1-cyanobenz[f]isoindole chitosan polymers and nanoparticles for live cell imaging. Biomacromolecules 15(8):2879–2888. https://doi.org/10.1021/bm5004459

    Article  CAS  PubMed  Google Scholar 

  57. Fan Y, Yi J, Zhang Y, Yokoyama W (2017) Improved chemical stability and antiproliferative activities of curcumin-loaded nanoparticles with a chitosan chlorogenic acid conjugate. J Agric Food Chem. https://doi.org/10.1021/acs.jafc.7b04451

    Article  PubMed  Google Scholar 

  58. Yancheva E, Paneva D, Maximova V, Mespouille L, Dubois P, Manolova N, Rashkov I (2007) Polyelectrolyte complexes between (cross-linked) N-carboxyethylchitosan and (quaternized) poly[2-(dimethylamino)ethyl methacrylate]: preparation, characterization, and antibacterial properties. Biomacromolecules 8(3):976–984. https://doi.org/10.1021/bm061029j

    Article  CAS  PubMed  Google Scholar 

  59. Kingkaew J, Kirdponpattara S, Sanchavanakit N, Pavasant P, Phisalaphong M (2014) Effect of molecular weight of chitosan on antimicrobial properties and tissue compatibility of chitosan-impregnated bacterial cellulose films. Biotechnol Bioproc E 19(3):534–544. https://doi.org/10.1007/s12257-014-0081-x

    Article  CAS  Google Scholar 

  60. Rodrı́guez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17(4):319–339. https://doi.org/10.1016/S0734-9750(99)00014-2

    Article  PubMed  Google Scholar 

  61. Fernandes JC, Tavaria FK, Soares JC, Ramos ÓS, João Monteiro M, Pintado ME, Xavier Malcata F (2008) Antimicrobial effects of chitosans and chitooligosaccharides, upon Staphylococcus aureus and Escherichia coli, in food model systems. Food Microbiol 25(7):922–928. https://doi.org/10.1016/j.fm.2008.05.003

    Article  CAS  PubMed  Google Scholar 

  62. Madureira AR, Pereira A, Castro PM, Pintado M (2015) Production of antimicrobial chitosan nanoparticles against food pathogens. J Food Eng 167:210–216. https://doi.org/10.1016/j.jfoodeng.2015.06.010

    Article  CAS  Google Scholar 

  63. Costa EM, Silva S, Vicente S, Neto C, Castro PM, Veiga M, Madureira R, Tavaria F, Pintado MM (2017) Chitosan nanoparticles as alternative anti-staphylococci agents: bactericidal, antibiofilm and antiadhesive effects. Mater Sci Eng C 79:221–226. https://doi.org/10.1016/j.msec.2017.05.047

    Article  CAS  Google Scholar 

  64. Nguyen TV, Nguyen TTH, Wang S-L, Vo TPK, Nguyen AD (2017) Preparation of chitosan nanoparticles by TPP ionic gelation combined with spray drying, and the antibacterial activity of chitosan nanoparticles and a chitosan nanoparticle–amoxicillin complex. Res Chem Intermed 43(6):3527–3537. https://doi.org/10.1007/s11164-016-2428-8

    Article  CAS  Google Scholar 

  65. No HK, Young Park N, Ho Lee S, Meyers SP (2002) Antibacterial activity of chitosans and chitosan oligomers with different molecular weights. Int J Food Microbiol 74(1):65–72. https://doi.org/10.1016/S0168-1605(01)00717-6

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the support of Laboratorio Nacional de Nano y Biomateriales (LANNBIO) at Centro de Investigación y de Estudios Avanzados (CINVESTAV) Mérida, Yucatán, México. The authors are grateful for the financial support Project PROFAPI_2019_0179 from Instituto Tecnologico de Sonora. The first author is grateful to CONACYT (269728).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reyna G. Sánchez-Duarte.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Villegas-Peralta, Y., López-Cervantes, J., Madera Santana, T.J. et al. Impact of the molecular weight on the size of chitosan nanoparticles: characterization and its solid-state application. Polym. Bull. 78, 813–832 (2021). https://doi.org/10.1007/s00289-020-03139-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-020-03139-x

Keywords

Navigation