Skip to main content
Log in

Recent advances in the applications of substituted polyanilines and their blends and composites

  • Review Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Conducting polymers remain as a key invention to the researchers in the last 3 decades. Among them, polyaniline serves as a potential candidate with feasible strategies to solve the current problems. Polyaniline is known for its extraordinary features such as ease of synthesis, low cost, considerable electrical conductivity, rich chemistry and strengthened biocompatibility. The scientific world has now diverged to the area of substituted polyanilines in the recent past owing to the efficient solubility, processability and extended applications in different fields. This review highlights the application aspects of the derivatives of polyanilines and their blends and composites in recent years. The wide application potentials of substituted polyanilines and their blends and composites in diverse fields such as in sensors, electrochromic display devices, solar cells, supercapacitors, batteries, semiconductors and anticorrosion materials, and in a variety of biological applications, have been highlighted. This review would bring new insights into polymer researchers to unravel novel applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Runge FF (1834) On some products of coal distillation. Ann Phys Chem 107:513–524

    Google Scholar 

  2. Letheby H (1862) On the production of a blue substance by the electrolysis of sulphate of aniline. J Chem Soc 15:161–163

    Google Scholar 

  3. Hofmann AW (1843) Chemical investigation of organic bases in coal tar oil. Ann Chem Pharm 47:37–87

    Google Scholar 

  4. MacDiarmid AG (2001) A novel role for organic polymers. Angew Chem Int 40:2581–2590

    CAS  Google Scholar 

  5. Shirakawa H (2001) The discovery of polyacetylene film: the dawning of an era of conducting polymers (Nobel lecture). Angew Chem Int 40:2574–2580

    Google Scholar 

  6. Heeger AJ (2001) Semiconducting and metallic polymers: the fourth generation of polymeric materials (Nobel lecture). Angew Chem Int 40:2591–2611

    CAS  Google Scholar 

  7. Ramussen SC (2017) The early history of polyaniline: discovery and origins. Substantia 1(2):99–109

    Google Scholar 

  8. Balint R, Caassidy NJ, Cartmell SH (2014) Conductive polymers: towards a smart biomaterial for tissue engineering. Acta Biomater 10:2341–2353

    CAS  PubMed  Google Scholar 

  9. Paalanna OG (2009) Engineering chemistry. Tata McGraw Hill Education Private Limited, New Delhi

    Google Scholar 

  10. Molapo KM, Ndangili PM, Ajayi RF, Mbambisa G, Mailu SM, Njomo N, Masikini M, Baker P, Iwuoha EI (2012) Electronics of conjugated polymers (I): polyaniline. Int J Electrochem Sci 7:11859–11875

    CAS  Google Scholar 

  11. Sangamithirai D, Narayanan V, Muthuraman B, Stephen A (2015) Investigations on the performance of poly(o-anisidine)/graphene nanocomposites for the electrochemical detection of NADH. Mater Sci Eng C Mater Biol Appl 55:579–591

    CAS  PubMed  Google Scholar 

  12. Genies EM, Boyle A, Lapkowski M, Tsintavis C (1990) Polyaniline: a historical survey. Synth Met 36:139–182

    CAS  Google Scholar 

  13. Li D, Huang JX, Kaner RB (2009) Polyaniline nanofibers: a unique polymer nanostructure for versatile applications. Acc Chem Res 42(1):135–145

    CAS  PubMed  Google Scholar 

  14. Tian Z, Yu H, Wang L, Saleem M, Ren F, Ren P, Chen Y, Sun Y, Hung L (2014) Recent progress in the preparation of polyaniline nanostructures and their applications in anticorrosive coatings. RSC Adv 4:28195–28208

    CAS  Google Scholar 

  15. Wang L, Liu N, Ma ZJ (2015) Novel gold decorated polyaniline derivatives as redox active species for simultaneous detection of three biomarkers of lung cancer. J Mater Chem B 3:2867–2872

    CAS  PubMed  Google Scholar 

  16. Zhang H, Wang J, Chen Y, Wang Z, Wang S (2013) Long-term cycling stability of polyaniline on graphite electrodes used for supercapacitors. Electrochim Acta 105:69–74

    CAS  Google Scholar 

  17. Hui X, Jiayue L, Yong C, Jang T, Zeting Z (2016) Facile fabrication of superhydrophobic polyaniline structures and their anticorrosive properties. J Appl Polym Sci. https://doi.org/10.1002/app.44248

    Article  Google Scholar 

  18. Riul JA, So AMG, Mello SV, Bone S, Taylor DM, Mattoso LHC (2003) An electronic tongue using polypyrrole and polyaniline. Synth Met 132:109–116

    CAS  Google Scholar 

  19. Ma X, Shi W (2003) Investigation of quantum size effect of laser induced CdS quantum dots in sulphonic group polyaniline (SPAn) film. Microelectron Eng 66:153–158

    CAS  Google Scholar 

  20. Saxena V, Malhotra BD (2003) Prospects of conducting polymers in molecular electronics. Curr Appl Phys 3:293–305

    Google Scholar 

  21. Li XG, Huang MR, Zhu LH, Yang YL (2001) Synthesis and air separation of soluble terpolymers from aniline, toluidine and xylidine. J Appl Polym Sci 82:790–798

    CAS  Google Scholar 

  22. Roth S, Graupner W (1993) Conductive polymers: evaluation of industrial applications. Synth Met 57:3623–3631

    CAS  Google Scholar 

  23. Hino T, Taniguchi S, Kuramoto N (2006) Syntheses of conductive adhesives based on epoxy resin and polyanilines by using N-tert-butyl-5-methylisoxazolium perchlorate as a thermally latent curing reagent. J Polym Sci Part A Polym Chem 44:718–726

    CAS  Google Scholar 

  24. Hosoda M, Hino T, Kuramoto N (2007) Facile preparation of conductive paint made with polyaniline/dodecylbenzenesulfonic acid dispersion and poly(methyl methacrylate). Polym Int 56:1448–1455

    CAS  Google Scholar 

  25. Barros RA, Martins CR, Azevedo WM (2005) Writing with conducting polymer. Synth Met 155:35–38

    Google Scholar 

  26. Yoshioka Y, Jabbour GE (2006) Desktop inkjet printer as a tool to print conducting polymers. Synth Met 156:779–783

    CAS  Google Scholar 

  27. Bowman D, Mattes BR (2005) Conductive fibre prepared from ultra-high molecularweight polyaniline for smart fabric and interactive textile applications. Synth Met 154:29–32

    CAS  Google Scholar 

  28. Ohtani A, Abe M, Ezoe M, Doi T, Miyata T, Miyke A (1993) Synthesis and properties of high-molecular-weight soluble polyaniline and its application to the 4 MB-capacity barium ferrite floppy disk’s antistatic coating. Synth Met 57:3696–3701

    CAS  Google Scholar 

  29. Schoch KF Jr, Byers WA, Buckley LJ (1995) Deposition and characterization of conducting polymer thin films on insulating substrates. Synth Met 72:13–23

    CAS  Google Scholar 

  30. Kulkarni VG, Campbell JC, Mathew WR (1993) Transparent conductive coatings. Synth Met 57:3780–3785

    CAS  Google Scholar 

  31. Cho MS, Cho YH, Choi HJ, Jhon MS (2003) Synthesis, Electrorheological characteristics of polyaniline-coated poly(methyl methacrylate) microsphere: size effect. Langmuir 19:5875–5881

    CAS  Google Scholar 

  32. Lee IS, Cho MS, Choi HJ (2005) Preparation of polyaniline coated poly(methylmethacrylate) microsphere by graft polymerization and its electrorheology. Polymer 46:1317–1321

    CAS  Google Scholar 

  33. Lee IS, Lee JY, Sung JH, Choi HJ (2005) Synthesis and electrorheological characteristics of polyaniline–titanium dioxide hybrid suspension. Synth Met 152:173–176

    CAS  Google Scholar 

  34. Cho MS, Choi HJ, Ahn WS (2004) Enhanced electrorheology of conducting polyaniline confined in MCM-41 channels. Langmuir 20:202–207

    CAS  PubMed  Google Scholar 

  35. Choi HJ, Kim TW, Cho MS, Kim SG, Jhon MS (1997) Electrorheological characterization of polyaniline dispersions. Eur Polym J 33:699–703

    CAS  Google Scholar 

  36. Bai H, Chen Q, Li C, Lu C, Shi G (2007) Electrosynthesis of polypyrrole/sulfonated polyaniline composite films and their applications for ammonia gas sensing. Polymer 48:4015–4020

    CAS  Google Scholar 

  37. Irimia-Vladu M, Fergus JW (2006) Suitability of emeraldine base polyaniline–PVA composite film for carbon dioxide sensing. Synth Met 156:1401–1407

    CAS  Google Scholar 

  38. Yan XB, Han ZJ, Yang Y, Tay BK (2007) NO2 gas sensing with polyanilines nanofibers synthesized by a facile aqueous/organic interfacial polymerisation. Sens Actuator B 123:107–113

    CAS  Google Scholar 

  39. Dixit V, Misra SCK, Sharma BS (2005) Carbon monoxide sensitivity of vacuum deposited polyaniline semiconducting thin films. Sens Actuator B 104:90–93

    CAS  Google Scholar 

  40. Jain S, Samui AB, Patri M, Hande VR, Bhoraskar SV (2005) FEP/polyanilines based multilayered chlorine sensor. Sens Actuator B 106:609–613

    CAS  Google Scholar 

  41. Ando M, Swart C, Pringsheim E, Mirsky VM, Wolfbeis OS (2005) Optical ozone-sensing properties of poly(2-chloroaniline), poly(N-methylaniline) and polyaniline films. Sens Actuator B 108:528–534

    CAS  Google Scholar 

  42. Kim JS, Sohn SO, Huh JS (2005) Fabrication and sensing behavior of PVF2 coated-polyaniline sensor for volatile organic compounds. Sens Actuator B 108:409–413

    CAS  Google Scholar 

  43. Hosseini SH, Entezami AA (2001) Preparation and characterization of polyaniline blends with polyvinyl acetate, polystyrene and polyvinyl chloride for toxic gas sensors. Polym Advan Technol 12:482–493

    CAS  Google Scholar 

  44. Joshi SS, Lokhande CD, Han SH (2007) A room temperature liquefied petroleum gas sensor based on all-electrodeposited n-CdSe/ppolyaniline junction. Sens Actuator B 123:240–245

    CAS  Google Scholar 

  45. Zou Y, Sun L, Xu F (2007) Prussian Blue electrodeposited on MWNTs-PANI hybrid composites for H2O2 detection. Talanta 72:437–442

    CAS  PubMed  Google Scholar 

  46. Nohria R, Khillan RK, Su Y, Dikshit R, Lvov Y, Varahramyan K (2006) Humidity sensor based on ultrathin polyaniline film deposited using layer-by-layer nano-assembly. Sens Actuator B 114:218–222

    CAS  Google Scholar 

  47. Huang J, Virji S, Weiller BH, Kaner RB (2003) Polyaniline nanofibers: facile synthesis and chemical sensors. J Am Chem Soc 125:314–315

    CAS  PubMed  Google Scholar 

  48. Muthukumar C, Kesarkar SD, Srivastava DN (2007) Conductometric mercury [II]; sensor based on polyaniline–cryptand-222 hybrid. J Electroanal Chem 602:172–180

    CAS  Google Scholar 

  49. Talaie A, Lee JH, Lee YK, Jang J, Romagnoli JA, Taguchi T et al (2000) Dynamic sensing using intelligent composite: an investigation to development of new pH sensors and electrochromic devices. Thin Solid Films 363:163–166

    CAS  Google Scholar 

  50. Arora K, Sumana G, Saxena V, Gupta RK, Gupta SK, Yakhmi JV et al (2007) Improved performance of polyaniline-uricase biosensor. Anal Chim Acta 594:17–23

    CAS  PubMed  Google Scholar 

  51. Ren J, He F, Zhang L, Su C, Liu Z (2007) A newB-PAn-P system for the detection of bacteria population. Sens Actuator B 125:510–516

    CAS  Google Scholar 

  52. Andreu Y, Marcos S, Castillo JR, Galban J (2005) Sensor film for Vitamin C determination based on absorption properties of polyaniline. Talanta 65:1045–1051

    CAS  PubMed  Google Scholar 

  53. Syed AA, Dinesan MK (1990) Polyaniline: reaction stoichiometry and use as an ion-exchange polymer and acid/base indicator. Synth Met 36:209–215

    CAS  Google Scholar 

  54. Lu J, Moon KS, Kim BK, Wong CP (2007) High dielectric constant polyaniline/epoxy composites via in situ polymerization for embedded capacitor applications. Polymer 48:1510–1516

    CAS  Google Scholar 

  55. Gupta V, Miura N (2006) Polyaniline/single-wall carbon nanotube (PANI/SWCNT) composites for high performance supercapacitors. Electrochim Acta 52:1721–1726

    CAS  Google Scholar 

  56. Sung JH, Kim SJ, Lee KH (2004) Preparation of compact polyaniline films: electrochemical synthesis using agar gel template and charge storage applications. J Power Sources 126:258–267

    CAS  Google Scholar 

  57. Meng C, Liu C, Fan S (2009) Flexible carbon nanotube/polyanilines paper-like films and their enhanced electrochemical properties. Electrochem Commun 11:186–189

    CAS  Google Scholar 

  58. Epstein AJ, Joo J, Kohlman RS, Du G, MacDiarmid AG, Oh EJ et al (1994) Inhomogeneous disorder and the modified Drude metallic state of conducting polymers. Synth Met 65:149–157

    CAS  Google Scholar 

  59. Joo J, Oh EJ, Min G, MacDiarmid AG, Epstein AJ (1995) Evolution of the conducting state of polyaniline from localized to mesoscopic metallic to intrinsic metallic regimes. Synth Met 69:251–254

    CAS  Google Scholar 

  60. Bhadra S, Singha NK, Khastgir D (2008) Semi-conductive composites from ethylene 1-octene copolymer and polyaniline coated nylon 6: studies on mechanical, thermal, processability, electrical and EMI shielding properties. Polym Eng Sci 48:995–1006

    CAS  Google Scholar 

  61. MacDiarmid AG, Yang LS, Huang WS, Humphrey BD (1987) Polyaniline: electrochemistry and application to rechargeable batteries. Synth Met 18:393–398

    CAS  Google Scholar 

  62. Somasiri NLD, MacDiarmid AG (1988) Polyaniline: characterization as a cathode active material in rechargeable batteries in aqueous electrolytes. J Appl Electrochem 18:92–95

    CAS  Google Scholar 

  63. Koga K, Yamasaki S, Narimatsu K, Takayanagi M (1989) Electrically conductive composite of polyaniline-aramid and its application as a cathode material for secondary battery. Polym J 9:733–738

    Google Scholar 

  64. Desilvestro J, Scheifele W, Haas O (1992) In situ determination of gravimetric and volumetric charge densities of battery electrodes: polyaniline in aqueous and nonaqueous electrolytes. J Electrochem Soc 139:2727–2736

    CAS  Google Scholar 

  65. Qiao Y, Li CM, Bao SJ, Bao QL (2007) Carbon nanotube/polyaniline composite as anode material for microbial fuel cells. J Power Sources 170:79–84

    CAS  Google Scholar 

  66. Watanabe A, Mori K, Iwasaki Y, Nakamura Y, Niizuma S (1987) Electrochromism of polyaniline film prepared by electrochemical polymerization. Macromolecules 20:1793–1796

    CAS  Google Scholar 

  67. Rodrigues MA, De Paoli MA, Mastragostino M (1991) Electrochromic properties of chemically prepared polyaniline. Electrochim Acta 36:2143–2146

    CAS  Google Scholar 

  68. Jelle BP, Hagen G, Hesjevik SM, Odegard R (1992) Transmission through an electrochromic window based on polyaniline, tungsten oxide and a solid polymer electrolyte. Mater Sci Eng B 13:239–241

    Google Scholar 

  69. Jelle BP, Hagen G, Sungle S, Obegard R (1993) Dynamic light modulation in an electrochromic window consisting of polyaniline, tungsten oxide and a solid polymer electrolyte. Synth Met 54:315–320

    CAS  Google Scholar 

  70. Chen SA, Chuang KR, Chao CI, Lee HT (1996) White-light emission from electroluminescence diode with polyaniline as the emitting layer. Synth Met 82:207–210

    CAS  Google Scholar 

  71. Gaponik NP, Talapina DV, Rogach AL (1999) A light-emitting device based on a CdTe nanocrystal/polyaniline composite. Phys Chem Chem Phys 1:1787–1789

    CAS  Google Scholar 

  72. Ruiz-Hitzky E, Darder M, Aranda P, Ariga K (2010) Advances in biomimetic and nanostructured biohybrid materials. Adv Mater 22:323–336

    CAS  PubMed  Google Scholar 

  73. Sultana S, Khan MZ, Umar K, Muneer M (2013) Electrical, thermal, photocatalytic and antibacterial studies of metallic oxide nanocomposite doped polyaniline. J Mater Sci Technol 29:795–800

    CAS  Google Scholar 

  74. Hung M-T, Choi O, Ju YS, Hahn H (2006) Heat conduction in graphite-nanoplatelet-reinforced polymer nanocomposites. Appl Phys Lett 89:023117

    Google Scholar 

  75. Kuilla T, Bhadra S, Yao D, Kim NH, Bose S, Lee JH (2010) Recent advances in graphene based polymer composites. Prog Polym Sci 35:1350–1375

    CAS  Google Scholar 

  76. Jeon IY, Baek JB (2010) Nanocomposites derived from polymers and inorganic nanoparticles. Materials 3:3654–3674

    CAS  PubMed Central  Google Scholar 

  77. Wang W, Gumfekar SP, Jiao Q, Zhao B (2013) Ferrite-grafted polyaniline nanofibers as electromagnetic shielding materials. J Mater Chem 1(16):2851–2859

    CAS  Google Scholar 

  78. Wang L, Lu X, Lei S, Song Y (2014) Graphene-based polyaniline nanocomposites: preparation, properties and applications. J Mater Chem A 2:4491–4509

    CAS  Google Scholar 

  79. Kumar A, Kumar V, Sain PK, Kumar M, Awasthi K (2018) Synthesis and characterisation of polyaniline membranes with secondary amine additive containing N,N′-dimethyl propylene urea for fuel cell application. Int J Hydrogen Energy 43:21715–21723

    CAS  Google Scholar 

  80. El-Sayeda NS, Abd El-Aziz ME, Kamel S, Turky G (2018) Synthesis and characterisation of polyaniline/tosylcellulose stearate composites as promising semiconducting materials. Synth Met 236:44–53

    Google Scholar 

  81. Kumar V, Zhou Y, Shambharkar G, Kunc V, Yokozeki T (2019) Reduced de-doping and enhanced electrical conductivity of polyaniline filled phenol- divinyl benzene composite for potential lightning strike protection application. Synth Met 249:81–89

    CAS  Google Scholar 

  82. Reddy KR, Karthik KV, Benaka Prasad SB, Soni SK, Jeong HM, Raghu AV (2016) Enhanced photocatalytic activity of nanostructured titanium dioxide/polyaniline hybrid photocatalysts. Polyhedron 120:169–174

    CAS  Google Scholar 

  83. Anirudhan TS, Shainy F, Mohan AM (2018) Fabrication of zinc oxide nanorod incorporated carboxylic graphene/polyaniline composite and its photocatalytic activity for the effective degradation of diuron from aqueous solutions. Sol Energy 171:534–546

    CAS  Google Scholar 

  84. Dakshayini BS, Reddy KR, Mishra A, Shetti NP, Malode SJ, Basu S, Naveen S, Raghu AV (2019) Role of conducting polymer and metal oxide-based hybrids for applications in ampereometric sensors and biosensors. Microchem J. https://doi.org/10.1016/j.microc.2019.02.061

    Article  Google Scholar 

  85. Sheltami RM, Abdullah I, Ahmad I, Dufresne A, Kargarzadeh H (2012) Extraction of cellulose nanocrystals from mengkuang leaves (Pandanus tectorius). Carbohydr Polym 88:772–779

    CAS  Google Scholar 

  86. Poyraz S, Cerkez I, Huang TS, Liu Z, Kang L, Luo J, Zhang X (2014) One- step synthesis and characterisation of polyaniline nanofiber/silver nanoparticle composite networks as antibacterial agents. ACS Appl Mater Interfaces. https://doi.org/10.1021/am505571m

    Article  PubMed  Google Scholar 

  87. Shahadat M, Khan MZ, Rupani PF, Embrandiri A, Sultana S, Ahammad SZ, Ali SW, Sreekrishnan TR (2017) A critical review on the prospect of polyaniline-grafted biodegradable nanocomposite. Adv Colloid Int Sci 249:2–16

    CAS  Google Scholar 

  88. Pelin GP, Fufa O, Popescu RC, Savu D, Socol M, Zgura I, Holban AM, Vasile BS, Grumezescu V, Socol G (2018) Lincomycin- embedded PANI—based coatings for biomedical applications. Appl Surf Sci 455:653–666

    Google Scholar 

  89. Kashyap G, Ameta G, Ameta C, Ameta R, Punjabi PB (2019) Synthesis and characterisation of polyaniline-drug conjugates as effective antituberculosis agents. Bioorg Med Chem Lett 29(11):1363–1369

    CAS  PubMed  Google Scholar 

  90. Nakajima T, Kawagoe T (1989) Polyaniline: structural analysis and application for battery. Synth Met 28:629–638

    Google Scholar 

  91. Kenry Liu B (2018) Recent advances in biodegradable conducting polymers and their biomedical applications. Biomacromolecules 19(6):1783–1803

    CAS  PubMed  Google Scholar 

  92. Bharti M, Singh A, Samanta S, Aswal DK (2018) Conductive polymers for thermoelectric power generation. Prog Mater Sci 93:270–310

    CAS  Google Scholar 

  93. Sato M, Tanaka S, Kaeriyama K (1986) Soluble conducting polythiphenes. J Chem Soc, Chem Commun 11:873–874

    Google Scholar 

  94. Jen KY, Oboddi R, Elsenbaumer RL (1985) Processible and environmentally stable conducting polymers. Polym Mater Sci Eng 53:79–83

    CAS  Google Scholar 

  95. Gagnon DR, Capistran JD, Karasz FE, Lenz RW (1984) Conductivity anisotropy in oriented poly(p-phenylene vinylene. Polym Bull 12:293–298

    CAS  Google Scholar 

  96. Bjorklund RB, Lidberg B (1986) Electrically conducting composites of colloidal polypyrrole and methylcellulose. J Chem Soc Chem Commun 16:1293–1295

    Google Scholar 

  97. Depaolie MA, Walterman RJ, Diaz AF, Bargon J (1985) An electrically conductive plastic composite derived from polypyrrole and poly(vinyl chloride). J Polym Sci Polym Chem 23:1687–1698

    Google Scholar 

  98. Lindancy SE, Street GB (1984) Conductive composites from polyvinyl alcohol and polypyrrole. Synth Met 10:67–69

    Google Scholar 

  99. Bozkurt A, Akbulut U, Toppare L (1996) Conducting polymer composites of polypyrrole and polyindene. Synth Met 82:41–46

    CAS  Google Scholar 

  100. Sharma S, Kumar D (2010) Study on solvatochromic behaviour of polyanilines and alkyl substituted polyaniline. Indian J Eng Mater S 17:231–237

    CAS  Google Scholar 

  101. Nguyen MT, Kasai P, Miller JL, Diaz AF (1994) Synthesis and properties of novel water-soluble conducting polyaniline copolymers. Macromolecules 27:3625–3631

    CAS  Google Scholar 

  102. Chan HSO, Ng SC, Sim WS, Seow SH, Tan KL, Tan BTG (1993) Synthesis and characterisation of conducting poly(o-aminobenzylalcohol) and its copolymers with aniline. Macromolecules 26:144–150

    CAS  Google Scholar 

  103. Gok A, Yavuz AG (2007) Preparation and characterisation of poly(2-halogenaniline) composites with Al2O3, SiO2 and Red mud. Int J Polym Anal Charact 12:155–169

    CAS  Google Scholar 

  104. Leclerc M, Aprona GD, Zotti G (1993) Structure–property relationships in polyaniline derivatives. Synth Met 55:1527–1532

    CAS  Google Scholar 

  105. Cai W, Wang J, Quan X, Wang Z (2018) Preparation of bromo-substituted polyaniline with excellent antibacterial activity. J Appl Polym Sci. https://doi.org/10.1002/app.45657

    Article  Google Scholar 

  106. Wankhede MG (2012) Chemical polymerisation of substituted derivatives of aniline in oxalic acid medium. Sci Revs Chem Commun 2(3):387–391

    CAS  Google Scholar 

  107. Porselvi L, Jhancy Mary S (2014) Synthesis, characterization and electrical conductivity of poly(2-chloroaniline)/MMT and poly(2-chloroaniline)/Na-Bentonite nanocomposites in the presence of surfactants. Int J Sci Technol Res 3(2):69

    Google Scholar 

  108. Vicentini DS (2014) Synthesis and characterization of carboxyl-substituted polyanilines doped with halogenated acids: combining conductivity with solubility. J Braz Chem Soc 25(11):1939–1947

    CAS  Google Scholar 

  109. Bissessur R, MacDonald J (2007) Synthesis and characterization of halo-substituted polyanilines/VOPO4 nanocomposites. Mater Chem Phys 106:256–259

    CAS  Google Scholar 

  110. Husain S, Shumaila Kumar A, Husain M (2017) Multiwall carbon nanotubes/polyaniline: poly-m-toulidine:poly-o-toulidine nanocomposites—synthesis, properties & field emission. Polym Compos. https://doi.org/10.1002/pc.24384

    Article  Google Scholar 

  111. Amaya T, Kurata I, Inada Y, Hatai T, Hirao T (2017) Synthesis of phosphonic acid ring- substituted polyanilines via direct phosphonation to polymer main chains. RSC Adv 7:39306–39313

    CAS  Google Scholar 

  112. Jangid NK, Chauhan NPS, Pinki BP (2015) Preparation and characterization of polyanilines bearing rhodamine 6-G and Azure B as pendant groups. J Macromol Sci A 52:95–104

    CAS  Google Scholar 

  113. Sankar A, Kumaravel M, RameshKumar S, Vijayan M (2013) Chemical synthesis of conductive poly(methoxyaniline) in hydroxyethylidenediphosphonic acid. Asian J Chem 25(6):3001–3004

    CAS  Google Scholar 

  114. Yavuz AG, Uygun A, Bhethanabotla VR (2009) Substituted polyaniline/chitosan composites: synthesis and characterization. Carbohydr Polym 75:448–453

    CAS  Google Scholar 

  115. Mu S, Xue H (1996) Bioelectrochemical characteristics of glucose oxidase immobilised in a polyaniline film. Sensor Actuator B Chem 31(3):155–160

    CAS  Google Scholar 

  116. Kim SJ, Shin SR, Spinks GM, Kim IY, Kim SI (2005) Synthesis and characteristics of a semi interpenetrating polymer network based on chitosan/polyaniline under different pH conditions. J Appl Polym Sci 96(3):867–873

    CAS  Google Scholar 

  117. Yavuz AG, Uygun A, Bhethanabotla VR (2010) Preparation of substituted polyaniline/chitosan composites by in situ electropolymerisation and their application to glucose sensing. Carbohydr Polym 81:712–719

    CAS  Google Scholar 

  118. Chen W, Cai S, Ren QQ, Wen W, Zhao YD (2012) Recent advances in electrochemical sensing for hydrogen peroxide: a review. Analyst 137:49–58

    CAS  PubMed  Google Scholar 

  119. Bhagayeri M, Zare EN, Lakouraj MM (2014) A simple hydrogen peroxide biosensor based on a novel electro-magnetic poly(p-phenylenediamine) @ Fe3O4 nanocomposite. Biosens Bioelectron 55:259–265

    Google Scholar 

  120. Pandule SS, Shisodia SU, Patil MR, Pawar RP, Chabukswar VV (2016) Synthesis and characterisation of methane sulphonic acid doped poly(2-chloroaniline) study of its physical properties and ammonia gas sensing application. J Macro Mol Sci Part A 53(12):768–772

    CAS  Google Scholar 

  121. Pandule SS, Patil MR, Keri RS (2018) Properties and ammonia gas sensing applications of different inorganic acid- doped poly(2-chloroanilines). Polym Bull. https://doi.org/10.1007/s00289-017-2263-0

    Article  Google Scholar 

  122. Rajabi H, Noroozifar M (2017) New synthesis of poly ortho-methoxyaniline nanostructures and its application to construct modified multi-wall carbon nanotube/graphite paste electrode for simultaneous determination of uric acid and folic acid. Mater Sci Eng C. https://doi.org/10.1016/j.msec.2017.02.133

    Article  Google Scholar 

  123. Tian Y, Qu K, Zeng X (2017) Investigation into the ring- substituted polyanilines and their application for the detection and adsorption of sulphur dioxide. Sens Actuators B. https://doi.org/10.1016/j.snb.2017.04.057

    Article  Google Scholar 

  124. Wang L, Liu N, Ma ZJ (2015) Novel gold- decorated polyaniline derivatives as redox- active species for simultaneous detection of three biomarkers of lung cancer. J Mater Chem B. https://doi.org/10.1039/c5tb00001g

    Article  PubMed  PubMed Central  Google Scholar 

  125. Kongkaew W, Sangwan W, Lerdwijitjarud W, Sirivat A (2017) Soft poly(2-chloroaniline)/pectin hydrogel and its electromechanical properties. J Biomater Appl. https://doi.org/10.1177/0885328217739457

    Article  PubMed  Google Scholar 

  126. Linganathan P, Sundararajan J, Samuel JM (2014) Synthesis, characterisation and photoconductivity studies on poly(2-chloroaniline) and poly(2-chloroaniline)/CuO nanocomposites. J Compos Mater. https://doi.org/10.1155/2014/838975

    Article  Google Scholar 

  127. Olad A, Rashidzadeh A (2008) Preparation and anticorrosive properties of PANI/Na-MMT and PANI/O-MMT nanocomposites. Prog Org Coat 62:293–298

    CAS  Google Scholar 

  128. Goncalves GS, Baldissera AF, Rodrigues LF, Martini EMA, Ferreira CA (2011) Alkyd coatings containing polyanilines for corrosion protection of mild steel. Synth Met 161:313–323

    CAS  Google Scholar 

  129. Martyak NM, McAndrew P (2007) Corrosion performance of steel coated with co-polyamides and polyaniline. Corros Sci 49:3826–3837

    CAS  Google Scholar 

  130. Cook A, Gabriel A, Laycock N (2004) On the mechanism of corrosion protection of mild steel with polyaniline. J Electrochem Soc 151:529–535

    Google Scholar 

  131. Gabriel A, Laycock N, Murray HN, Williams G, Cook A (2006) Oxidation states exhibited by in-coating polyaniline during corrosion-driven coating delamination on carbon steel. Electrochem Solid State Lett 9:57–60

    Google Scholar 

  132. Shreepathi S, Hoang HV, Holze R (2007) Corrosion protection performance and spectroscopic investigations of soluble conducting polyaniline-dodecylbenzenesulfonate synthesized via inverse emulsion procedure. J Electrochem Soc 154:67–73

    Google Scholar 

  133. Ogurtsov NA, Pud AA, Kamarchik P, Shapoval GS (2004) Corrosion inhibition of aluminium alloy in chloride mediums by undoped and doped forms of polyaniline. Synth Met 143:43–47

    CAS  Google Scholar 

  134. Huerta-Vilca D, Moraes SR, Motheo AJ (2004) Anodic treatment of aluminium in nitric acid containing aniline, previous to deposition of polyaniline and its role on corrosion. Synth Met 140:23–27

    CAS  Google Scholar 

  135. Zhong L, Xiao S, Hu J, Zhu H, Gan F (2006) Application of polyaniline to galvanic anodic protection on stainless steel in H2SO4 solutions. Corros Sci 48:3960–3968

    CAS  Google Scholar 

  136. Jafari Y, Nooshabadi MS, Ghoreishi SM (2014) Poly(2-chloroaniline) electropolymerisation coatings on aluminium alloy 3105 and evaluating their corrosion protection performance. Trans Indian Inst Met. https://doi.org/10.1007/s12666-013-0374-3

    Article  Google Scholar 

  137. Cai W, Wang J, Quan X, Zhao S, Wang Z (2018) Antifouling and anticorrosion properties of one-pot synthesised dedoped bromo-substituted polyaniline and its composite coatings. Surf Coat Technol 334:7–18

    CAS  Google Scholar 

  138. Benchikh A, Aitout R, Makhloufi L, Benhaddad L, Saidani B (2009) Soluble conducting poly(aniline-co-orthotoluidine) copolymer as corrosion inhibitor for carbon steel in 3% NaCl solution. Desalination 249:466–474

    CAS  Google Scholar 

  139. Vani G, Mary SJ (2019) Synthesis and characterisation of poly(2-chloroaniline) its starch and silk blends and applications in lithium ion batteries. Mater Today Proc 8(1):176–181

    CAS  Google Scholar 

  140. Mahudeswaran A, Vivekanandan J, Vijayanand PS, Kojima T, Kato S (2016) A facile synthesis of poly(aniline-co-o-bromoaniline) copolymer: characterisation and application as semiconducting material. Int J Mod Phy B 30:165008

    Google Scholar 

  141. Mahudeswaran A, Vivekanandan J, Vijayanand PS (2015) Chemical oxidative polymerisation of aniline with o-ethyl aniline: their molecular structure, morphology and conducting properties. Asian J Chem 27(12):4501–4504

    CAS  Google Scholar 

  142. Lakshmi P, Mary SJ (2017) A comparative study on the electrical and thermal properties of the chemically synthesised copolymer, poly(2-methoxyaniline-co-2-chloroaniline) and its nanocomposite, poly(2-methoxyaniline-co-2-chloroaniline)-composite-Fe2O3. J Pharm 17–23

  143. Linganathan P, Mary SJ (2014) Effect of dodecyl benzene sulphonic acid on the electrical conductivity behaviour of poly(2-chloroaniline)/silk blends. Am J Polym Sci 4(4):107–116

    CAS  Google Scholar 

  144. Lakshmi P, Mary SJ (2018) Chemical synthesis, characterisation and electrical conductivity behaviour of poly(2-chloroaniline-co-2-methoxyaniline)-blend-sodium alginate. J Appl Chem Sci Int 9:115–121

    CAS  Google Scholar 

  145. Lakshmi P, Mary SJ (2018) Chemical synthesis, spectral characterisation and electrical conductivity behaviour of poly(2-methoxyaniline-co-2-chloroaniline) and its Cuo nanocomposite and polypropylene glycol blend. J Polym Compos 6(3):1–13

    CAS  Google Scholar 

  146. Zhang Y, Feng H, Wu X, Wang L, Zhang A, Xia T, Dong H, Li X, Zhang L (2009) Progress of electrochemical capacitor electrode materials: a review. Int J Hydrogen Energy 34(11):4889–4899

    CAS  Google Scholar 

  147. Burke A (2007) R & D considerations for the performance and application of electrochemical capacitor. Electrochim Acta 53(3):1083–1091

    CAS  Google Scholar 

  148. Liu X, Long Q, Jiang C, Zhan B, Li C, Liu S, Zhao Q, Huang W, Dong X (2013) Facile and green synthesis of mesoporous Co3O4 nanocubes and their applications for supercapacitors. Nanoscale 5(14):6525–6529

    CAS  PubMed  Google Scholar 

  149. Zhang J, Gao J, Song Q, Guo Z, Chen A, Chen G, Zhou S (2016) N-substituted carboxyl polyaniline covalent grafting reduced graphene oxide nanocomposites and its application in supercapacitor. Electrochim Acta 199:70–79

    CAS  Google Scholar 

  150. Sevil UA, Coskun E, Guven O (2014) Electrical conductivity and spectroscopic characterisation of blends of poly(2-chloroaniline)/polyaniline copolymer with PVC exposed to gamma rays. Radiat Phys Chem 94:45–48

    CAS  Google Scholar 

  151. Paddeu S, Ram MK, Carrara S, Nicolini C (1998) Langmuir-Schaefer films of a poly(o-anisidine) conducting polymers for sensors and displays. Nanotechnology 9:228–236

    CAS  Google Scholar 

  152. Bamfield P (2001) Chromic phenomena. Royal Society of Chemistry, Cambridge

    Google Scholar 

  153. Mortimer RJ, Dyer AL, Reynolds JR (2006) Electrochromic organic and polymeric materials for display applications. Displays 27:2–18

    CAS  Google Scholar 

  154. Rosseinsky DR, Mortimer RJ (2001) Electrochromic systems and the prospects for devices. Adv Mater 13:783–793

    CAS  Google Scholar 

  155. Zhang L, Lang Q, Shi Z (2010) Electrochemical synthesis of three-dimensional polyaniline network on 3-Aminobenzenesulphonic acid functionalized glassy carbon electrode and its application. Am J Anal Chem 1:102–112

    Google Scholar 

  156. Shahhosseini L, Nateghi MR, Kazemipour M, Zarandi MB (2016) Electrochemical synthesis of novel polymer based on (4-(2,3-dihydrothienol [3,4-6][1,4][dioxin-5-yl) aniline) in aqueous solution: characterisation and application. Mater Chem Phys 177:554–563

    CAS  Google Scholar 

  157. Saharan R, Kaur A, Dhawan SK (2015) Synthesis and characterisation of poly(o-methoxy aniline) and its copolymer for electrochromic device energy applications. Indian J Pure Appl Phy 53:316–319

    Google Scholar 

  158. Dutta PK, Dutta J, Tripathi VS (2004) Chitin and chitosan: chemistry, properties and applications. J Sci Ind Res 63:20–31

    CAS  Google Scholar 

  159. Abd El-Salam HM, Kamal EHM, Ibrahim MS (2016) Synthesis and characterisation of chitosan-grafted-poly(2-hydroxyaniline) microstructures for water decontamination. J Polym Environ. https://doi.org/10.1007/s10924-016-0847-7

    Article  Google Scholar 

  160. Abdolahi A, Hamzah E, Ibrahim Z, Hashim S (2014) Application of environmentally friendly coatings toward inhibiting the microbially influenced corrosion (MIC) of steel: a review. Polym Rev 54:702–745

    CAS  Google Scholar 

  161. Nikolaidis MRG, Pagnon JC, Ali N, Sum R, Davies N, Roddam LF, Ambrose M (2015) Functionalised polyanilines disrupt Pseudomonas aeruginosa and Staphylococcus aureus biofilms. Colloids Surf B Biointerfaces 136:666–673

    Google Scholar 

  162. Bonilla AM, Garcia MF (2012) Polymeric materials with antimicrobial activity. Prog Polym Sci 37:281–339

    Google Scholar 

  163. Nikolaidis MRG, Bennett JR, Swift S, Easteal AJ, Ambrose M (2011) Broad spectrum antimicrobial activity of functionalised polyanilines. Acta Biomater 7:4204–4209

    Google Scholar 

  164. Pandiselvi K, Thambidurai S (2015) Synthesis, characterisation and antimicrobial activity of chitosan-zinc oxide/polyaniline composites. Mater Sci Semicond Process 31:573–581

    CAS  Google Scholar 

  165. Al-Hussaini AS, Eldars W (2014) Non-conventional synthesis and antibacterial activity of poly(aniline-co-o-phenylenediamine)/bentonite nanocomposites. Des Monomer Polym 17(5):458–465

    CAS  Google Scholar 

  166. Jangid NM, Chauhan NPS, Punjabi PB (2014) Novel dye-substituted polyanilines: conducting and antimicrobial properties. Polym Bull 71:2611–2630

    CAS  Google Scholar 

  167. Quan X, Wang J, Souleymana T, Cai W, Zhaoa S, Wang Z (2018) Antibacterial and antifouling performance of bisphenol A/poly(ethylene glycol) binary epoxy coatings containing bromine-benzyl disubstituted polyanilines. Prog Org Coat 124:61–70

    CAS  Google Scholar 

  168. Ahmad MN, Anjum MN, Nawaz F, Iqbal S, Saif MJ, Hussain T, Mujahid A, Farooq MU, Nadeem M, Rahman A, Raza A, Shehzad K (2017) Synthesis and antibacterial potential of hybrid nanocomposites based on polyorthochloroaniline/copper nanofiller. Polym Compos. https://doi.org/10.1002/pc.24558

    Article  Google Scholar 

  169. Ahmad MN, Rafique F, Nawaz F, Farooq T, Anjum MN, Hussain T, Hassan S, Batool M, Khalid H, Shehzad K (2018) Synthesis of antibacterial poly(o-chloroaniline)/chromium hybrid composites with enhanced electrical conductivity. Chem Cent J 12:46

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Kashyap G, Meghawal K, Ameta C, Ameta R, Punjabi PB (2018) Synthesis of ascorbic acid doped oligoaniline, its drug composites and study of their antibacterial behaviour. Polym Bull. https://doi.org/10.1007/s00289-018-2502-z

    Article  Google Scholar 

  171. Abd El- Salam HM, Azzam EMS, Aboad RS (2017) Synthesis and characterisation of poly(2-aminothiophenol-co-2-methylaniline)/silver nanoparticles as anti- sulphate reducing bacteria. Int J Polym Mater. https://doi.org/10.1080/00914037.2017.1354196

    Article  Google Scholar 

  172. Callow JA, Callow ME (2011) Trends in the development of environmentally friendly fouling resistant marine coatings. Nat Commun 2:244

    PubMed  Google Scholar 

  173. Peres RS, Armelin E, Aleman C, Ferreira CA (2015) Modified tannin extracted from black wattle tree as an environmrntally friendly antifouling pigment. Ind Crop Prod 65:506–514

    CAS  Google Scholar 

  174. Yang WJ, Neoh KG, Kang ET, Teo SLM, Rittschof D (2014) Polymer brush coatings for combining marine biofouling. Prog Polym Sci 39:1017–1042

    CAS  Google Scholar 

  175. Wang Y, Wang Z, Wang J, Wang S (2018) Triple antifouling strategies for reverse osmosis membrane biofouling control. J Membr Sci 549:495–506

    CAS  Google Scholar 

  176. Ming DWW, Benthem RV, With GD (2005) Superhydrophobic films from raspberry like particles. Nano Lett 5:2298–2301

    CAS  PubMed  Google Scholar 

  177. Liu K, Su ZG, Miao SD, Ma GH, Zhang SP (2016) UV-curable enzymatic antibacterial waterborne polyurethane coating. Biochem Eng J 113:107–113

    CAS  Google Scholar 

  178. Mondal P, Purkait MK (2017) Effect of polyethylene glycol methyl ether blend humic acid on poly(vinylidene fluoride-co-hexafluropropylene) PVDF-HFP membranes: pH responsiveness and antifouling behaviour with optimization approach. Polym Test 61:162–176

    CAS  Google Scholar 

  179. Basu BJ, Kumar VD, Anandan C (2012) Surface studies on superhydrophobic and oleophobic polydimethylsiloxane–dssilica nanocomposite coating system. Appl Surf Sci 261:807–814

    CAS  Google Scholar 

  180. Sileika TS, Kim HD, Maniak P, Messersmith PB (2011) Antibacterial performance of polydopamine- modified polymer surfaces containing passive and active components. ACS Appl Mater Interfaces 3:4602–4610

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jhancy Mary Samuel.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sebastian, J., Samuel, J.M. Recent advances in the applications of substituted polyanilines and their blends and composites. Polym. Bull. 77, 6641–6669 (2020). https://doi.org/10.1007/s00289-019-03081-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-019-03081-7

Keywords

Navigation