Skip to main content

Advertisement

Log in

Synthesis of polyvinyl alcohol/CuO nanocomposite hydrogel and its application as drug delivery agent

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In this research, polyvinyl alcohol (PVA) was chemically cross-linked using epichlorohydrin (ECH). The nanocomposite hydrogels containing copper oxide nanoparticles (CuONPs) were synthesized through immersion of polyvinyl alcohol hydrogel in copper sulfate solution with different concentrations. The produced Cu2+ ions from copper sulfate were bound to hydroxyl groups via metal complexation. With the addition of NaOH solution, Cu2+ ions were converted to copper oxide nanoparticles. The morphology, surface investigation and identification of nanoparticles in polymer matrix were characterized using Fourier transform infrared spectroscopy, X-ray diffraction and scanning electron microscopy. Swelling properties of the prepared nanocomposite hydrogels were investigated with various solutions such as the urea, urine, d-glucose, salt solutions (CaCl2 and NaCl) and buffers (pH 1.2 and 7.4). Copper oxide nanoparticles led to an increase in swelling capacity of nanocomposite hydrogels. Indeed, loading and release behaviors of ibuprofen on nanocomposite hydrogels were studied.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hamidi M, Azadi A, Rafiei P (2008) Hydrogel nanoparticles in drug delivery. Adv Drug Deliv Rev 60(15):1638–1649

    Article  CAS  PubMed  Google Scholar 

  2. Yadollahi M, Gholamali I, Namazi H, Aghazadeh M (2015) Synthesis and characterization of antibacterial carboxymethylcellulose/CuO bio-nanocomposite hydrogels. Int J Biol Macromol 73:109–114

    Article  CAS  PubMed  Google Scholar 

  3. Yadollahi M, Namazi H, Aghazadeh M (2015) Antibacterial carboxymethyl cellulose/Ag nanocomposite hydrogels cross-linked with layered double hydroxides. Int J Biol Macromol 79:269–277. https://doi.org/10.1016/j.ijbiomac.2015.05.002

    Article  CAS  PubMed  Google Scholar 

  4. Namazi H, Rakhshaei R, Hamishehkar H, Kafil HS (2016) Antibiotic loaded carboxymethylcellulose/MCM-41 nanocomposite hydrogel films as potential wound dressing. Int J Biol Macromol 85:327–334

    Article  CAS  PubMed  Google Scholar 

  5. Gulrez SK, Al-Assaf S, Phillips GO (2011) Hydrogels: methods of preparation, characterisation and applications. In: Carpi A (ed) Progress in molecular and environmental bioengineering-from analysis and modeling to technology applications. InTech, London, pp 117–151. https://doi.org/10.5772/771

    Chapter  Google Scholar 

  6. Amin S, Rajabnezhad S, Kohli K (2009) Hydrogels as potential drug delivery systems. Sci Res Essays 4(11):1175–1183

    Google Scholar 

  7. Rudzinski W, Dave A, Vaishnav U, Kumbar S, Kulkarni A, Aminabhavi T (2002) Hydrogels as controlled release devices in agriculture. Des Monomers Polym 5(1):39–65

    Article  CAS  Google Scholar 

  8. Lee KY, Mooney DJ (2001) Hydrogels for tissue engineering. Chem Rev 101(7):1869–1880

    Article  CAS  PubMed  Google Scholar 

  9. Gao D, Heimann R, Lerchner J, Seidel J, Wolf G (2001) Development of a novel moisture sensor based on superabsorbent poly(acrylamide)-montmorillonite composite hydrogels. J Mater Sci 36(18):4567–4571

    Article  CAS  Google Scholar 

  10. Namazi H, Jafarirad S (2011) Application of hybrid organic/inorganic dendritic ABA type triblock copolymers as new nanocarriers in drug delivery systems. Int J Polym Mater 60(9):603–619

    Article  CAS  Google Scholar 

  11. Yadollahi M, Namazi H (2013) Synthesis and characterization of carboxymethyl cellulose/layered double hydroxide nanocomposites. J Nanopart Res 15(4):1563

    Article  CAS  Google Scholar 

  12. Vashist A, Ahmad S (2013) Hydrogels: smart materials for drug delivery. Orient J Chem 29(3):861–870

    Article  CAS  Google Scholar 

  13. Schexnailder P, Schmidt G (2009) Nanocomposite polymer hydrogels. Colloid Polym Sci 287(1):1–11

    Article  CAS  Google Scholar 

  14. Muppalaneni S, Omidian H (2013) Polyvinyl alcohol in medicine and pharmacy: a perspective. J Dev Drugs 2(3):112–117. https://doi.org/10.4172/2329-6631.1000112

    Article  CAS  Google Scholar 

  15. Patachia S, Rinja M, Isac L (2004) Some methods for doping poly(vinyl alcohol) hydrogels [PVA-HG]. Phys Chem 51:253–262

    Google Scholar 

  16. Bo J (1992) Study on PVA hydrogel crosslinked by epichlorohydrin. J Appl Polym Sci 46(5):783–786

    Article  Google Scholar 

  17. Jiang S, Liu S, Feng W (2011) PVA hydrogel properties for biomedical application. J Mech Behav Biomed Mater 4(7):1228–1233

    Article  CAS  PubMed  Google Scholar 

  18. Sirousazar M, Yari M (2010) Dehydration kinetics of polyvinyl alcohol hydrogel wound dressings during wound healing process. Chin J Polym Sci 28(4):573–580

    Article  CAS  Google Scholar 

  19. Kobayashi M, Hyu HS (2010) Development and evaluation of polyvinyl alcohol-hydrogels as an artificial atrticular cartilage for orthopedic implants. Materials 3(4):2753–2771

    Article  CAS  PubMed Central  Google Scholar 

  20. Hassan CM, Peppas NA (2000) Structure and applications of poly(vinyl alcohol) hydrogels produced by conventional crosslinking or by freezing/thawing methods. In: Biopolymers· PVA hydrogels, anionic polymerisation nanocomposites. Springer, pp 37–65

  21. Lanje AS, Sharma SJ, Pode RB, Ningthoujam RS (2010) Synthesis and optical characterization of copper oxide nanoparticles. Adv Appl Sci Res 1(2):36–40

    CAS  Google Scholar 

  22. Swarnkar R, Singh S, Gopal R (2009) Synthesis of copper/copper-oxide nanoparticles: optical and structural characterizations. In: AIP Conference Proceedings, p 1147

  23. Chang Y-N, Zhang M, Xia L, Zhang J, Xing G (2012) The toxic effects and mechanisms of CuO and ZnO nanoparticles. Materials 5(12):2850–2871

    Article  CAS  PubMed Central  Google Scholar 

  24. Wongpisutpaisan N, Charoonsuk P, Vittayakorn N, Pecharapa W (2011) Sonochemical synthesis and characterization of copper oxide nanoparticles. Energy Procedia 9:404–409

    Article  CAS  Google Scholar 

  25. Ahmad Z, Vargas-Reus M, Bakhshi R, Ryan F, Ren G, Oktar F, Allaker R (2012) Antimicrobial properties of electrically formed elastomeric polyurethane–copper oxide nanocomposites for medical and dental applications. Methods Enzymol 509:87–99

    Article  CAS  PubMed  Google Scholar 

  26. Gouda M, Hebeish A (2009) Preparation and evaluation of CuO/chitosan nanocomposite for antibacterial finishing cotton fabric. J Ind Text 39:203–214. https://doi.org/10.1177/1528083709103142

    Article  CAS  Google Scholar 

  27. Yadollahi M, Farhoudian S, Namazi H (2015) One-pot synthesis of antibacterial chitosan/silver bio-nanocomposite hydrogel beads as drug delivery systems. Int J Biol Macromol 79:37–43

    Article  CAS  PubMed  Google Scholar 

  28. Barkhordari S, Yadollahi M, Namazi H (2014) pH sensitive nanocomposite hydrogel beads based on carboxymethyl cellulose/layered double hydroxide as drug delivery systems. J Polym Res 21(6):1–9

    Article  CAS  Google Scholar 

  29. Alpesh P, Kibret M (2011) Hydrogel biomaterials. In: Fazel PR (ed) Biomedical engineering—frontiers and challenges. In TeCH, London, pp 275–296. https://doi.org/10.5772/24856

    Chapter  Google Scholar 

  30. Allen TM, Cullis PR (2004) Drug delivery systems: entering the mainstream. Science 303(5665):1818–1822

    Article  CAS  PubMed  Google Scholar 

  31. Yousef T, Hassan N (2017) Supramolecular encapsulation of doxorubicin with β-cyclodextrin dendrimer: in vitro evaluation of controlled release and cytotoxicity. J Incl Phenom Macrocycl Chem 87(1–2):105–115

    Article  CAS  Google Scholar 

  32. Toomari Y, Namazi H (2016) Synthesis of supramolecular biodendrimeric β-CD-(spacer-β-CD) 21 via click reaction and evaluation of its application as anticancer drug delivery agent. Int J Polym Mater Polym Biomater 65(10):487–496

    Article  CAS  Google Scholar 

  33. Bakravi A, Ahamadian Y, Hashemi H, Namazi H (2018) Synthesis of gelatin‐based biodegradable hydrogel nanocomposite and their application as drug delivery agent. Adv Polym Technol. https://doi.org/10.1002/adv.21938

  34. Carlotti SJ, Giani-Beaune O, Schué F (2001) Water-soluble poly(vinyl alcohol) grafted with propylene oxide and epichlorohydrin: characterization, mechanical properties, and model reactions. J Appl Polym Sci 81(12):2868–2874

    Article  CAS  Google Scholar 

  35. Bai X, Ye Z, Li Y, Ma Y (2010) Macroporous poly(vinyl alcohol) foam crosslinked with epichlorohydrin for microorganism immobilization. J Appl Polym Sci 117(5):2732–2739

    CAS  Google Scholar 

  36. Carbone K, Casarci M, Varrone M (1999) Crosslinked poly(vinyl alcohol) supports for the immobilization of a lipolytic enzyme. J Appl Polym Sci 74(8):1881–1889

    Article  CAS  Google Scholar 

  37. Feng Q, Tang B, Wei Q, Hou D, Bi S, Wei A (2012) Preparation of a Cu(II)-PVA/PA6 composite nanofibrous membrane for enzyme immobilization. Int J Mol Sci 13(10):12734–12746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mallakpour S, Dinari M, Azadi E (2015) Poly(vinyl alcohol) chains grafted onto the surface of copper oxide nanoparticles: application in synthesis and characterization of novel optically active and thermally stable nanocomposites based on poly(amide-imide) containing N-trimellitylimido-l-valine linkage. Int J Polym Anal Charact 20(1):82–97

    Article  CAS  Google Scholar 

  39. Boroumand F, Moser JE, Van Den Bergh H (1992) Quantitative diffuse reflectance and transmittance infrared spectroscopy of nondiluted powders. Appl Spectrosc 46(12):1874–1886

    Article  CAS  Google Scholar 

  40. Hemalatha K, Rukmani K, Suriyamurthy N, Nagabhushana B (2014) Synthesis, characterization and optical properties of hybrid PVA–ZnO nanocomposite: a composition dependent study. Mater Res Bull 51:438–446

    Article  CAS  Google Scholar 

  41. Vicentini DS, Smania A, Laranjeira MC (2010) Chitosan/poly(vinyl alcohol) films containing ZnO nanoparticles and plasticizers. Mater Sci Eng C 30(4):503–508

    Article  CAS  Google Scholar 

  42. Li W, Xue F, Cheng R (2007) Synthesis, characterization and swelling properties of a chemically cross-linked poly(vinyl alcohol) hydrogel. Front Chem China 2(2):188–192

    Article  Google Scholar 

  43. Mansur HS, Oréfice RL, Mansur AA (2004) Characterization of poly(vinyl alcohol)/poly(ethylene glycol) hydrogels and PVA-derived hybrids by small-angle X-ray scattering and FTIR spectroscopy. Polymer 45(21):7193–7202

    Article  CAS  Google Scholar 

  44. Yang C-C, Lin S-J, Hsu S-T (2003) Synthesis and characterization of alkaline polyvinyl alcohol and poly(epichlorohydrin) blend polymer electrolytes and performance in electrochemical cells. J Power Sources 122(2):210–218

    Article  CAS  Google Scholar 

  45. Bhuiyan M, Saidur R, Amalina M, Mostafizur R, Islam A (2015) Effect of nanoparticles concentration and their sizes on surface tension of nanofluids. Procedia Eng 105:431–437

    Article  CAS  Google Scholar 

  46. Ruiz J, Mantecon A, Cadiz V (2001) Synthesis and properties of hydrogels from poly(vinyl alcohol) and ethylenediaminetetraacetic dianhydride. Polymer 42(15):6347–6354

    Article  CAS  Google Scholar 

  47. Cava R (1990) Structural chemistry and the local charge picture of copper oxide superconductors. Science 247(4943):656–662

    Article  CAS  PubMed  Google Scholar 

  48. Chang C, Duan B, Cai J, Zhang L (2010) Superabsorbent hydrogels based on cellulose for smart swelling and controllable delivery. Eur Polym J 46(1):92–100

    Article  CAS  Google Scholar 

  49. Masuda Y, Okazaki Y, Nakanishi T (2002) Ion-specific swelling behavior of poly(vinyl alcohol) gel in aqueous solutions containing some divalent ions. Colloid Polym Sci 280(9):873–875

    Article  CAS  Google Scholar 

  50. Hosseinzadeh H (2013) Synthesis and swelling properties of a poly(vinyl alcohol)-based superabsorbing hydrogel. Curr Chem Lett 2(3):153–158

    Article  CAS  Google Scholar 

  51. Varshosaz J, Koopaie N (2002) Cross-linked poly(vinyl alcohol) hydrogel: study of swelling and drug release behaviour. Iran Polym J 11:123–131

    CAS  Google Scholar 

Download references

Acknowledgements

Authors gratefully acknowledge the financial support of ‘Excellence center for Clean Chemistry and New Materials’ the University of Tabriz, and ‘Research Center for Pharmaceutical Nanotechnology (RCPN) of Medical Science’ in Tabriz University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Namazi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmadian, Y., Bakravi, A., Hashemi, H. et al. Synthesis of polyvinyl alcohol/CuO nanocomposite hydrogel and its application as drug delivery agent. Polym. Bull. 76, 1967–1983 (2019). https://doi.org/10.1007/s00289-018-2477-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-018-2477-9

Keywords

Navigation