Skip to main content
Log in

Application of response surface methodology in assessing the effect of electrospinning parameters on the morphology of polyethylene oxide/polyacrylonitrile blend nanofibers containing graphene oxide

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Electrospun polyethylene oxide/polyacrylonitrile/graphene oxide (PEO/PAN/GO) membranes were produced for using as polymer electrolytes in dye-sensitized solar cells. The effects of material and process parameters on the diameter of the fibers were evaluated using Box–Behnken experimental design to obtain a quantitative relationship between selected parameters (namely GO content, solution concentration, feed rate) and responses (nanofibers diameters and their standard deviation). The importance of the parameters and their interactions were investigated through the analysis of variance. The model was consequently used to find the optimal conditions that yield the minimum nanofiber diameter. The morphology and nanofiber diameter were investigated by scanning electron microscopy. Fibers with diameters ranging from 103 to 340 nm were obtained. It was observed that the nanofiber diameter increased with solution concentration and feed rate. The GO incorporation caused a reduction of the nanofiber diameters. Nanofibers with smaller diameters and standard deviations could be obtained at lower solution concentrations and feed rates. Based on the desirability function, the optimized factors for minimum nanofiber diameter were found as 1 wt% GO, 17 w/v% solution concentration and 1 ml/h feed rate. Finally, the thermal and electrochemical properties of the optimized sample were compared with the pristine PEO/PAN membrane electrolyte. The measured electrolyte uptake and ionic conductivity of the membranes showed a significant improvement in the presence of GO nanosheets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hou H, Gc JJ, Zeng J, Li Q, Reneker DH, Greiner A, Cheng SZD (2005) Electrospun polyacrylonitrile nanofibers containing a high concentration of well-aligned multiwall carbon nanotubes. Chem Mater 25:967–973

    Article  CAS  Google Scholar 

  2. Dror Y, Salalha W, Khalfin RL, Cohen Y, Yarin AL, Zussman E (2003) Carbon nanotubes embedded in oriented polymer nanofibers by electrospinning. Langmuir 19:7012–7020

    Article  CAS  Google Scholar 

  3. Ramalingam KJ, Dhineshbabu NR, Srither SR, Saravanakumar B, Yuvakkumar R, Rajendran V (2014) Electrical measurement of PVA/graphene nanofibers for transparent electrode applications. Synth Met 191:113–119

    Article  CAS  Google Scholar 

  4. Zhao X, Zhang Q, Chen D, Lu P (2010) Enhanced mechanical properties of graphene-based poly (vinyl alcohol) Composites. Macromolecules 43:2357–2363

    Article  CAS  Google Scholar 

  5. Mccullen SD, Stevens DR, Roberts WA, Ojha SS, Clarke LI, Gorga RE (2007) Morphological, electrical, and mechanical characterization of electrospun nanofiber mats containing multiwalled carbon nanotubes. Macromolecules 40:997–1003

    Article  CAS  Google Scholar 

  6. Kedem S, Schmidt J, Paz Y, Cohen Y (2005) Composite polymer nanofibers with carbon nanotubes and titanium dioxide particles. Langmuir 21:5600–5604

    Article  CAS  PubMed  Google Scholar 

  7. Nasajpour A, Mandla S, Shree S et al (2017) Nanostructured fibrous membranes with rose spike-like architecture. Nano Lett 17:6235–6240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Liu H, Kameoka J, Czaplewski DA, Craighead HG (2004) Polymeric nanowire chemical sensor. Nano Lett 4:671–675

    Article  CAS  Google Scholar 

  9. Aussawasathien D, Dong JH, Dai L (2005) Electrospun polymer nanofiber sensors. Synth Met 154:37–40

    Article  CAS  Google Scholar 

  10. Barhate RS, Ramakrishna S (2007) Nanofibrous filtering media: filtration problems and solutions from tiny materials. J Membr Sci 296:1–8

    Article  CAS  Google Scholar 

  11. Li WJ, Cooper JA, Mauck RL, Tuan RS (2006) Fabrication and characterization of six electrospun poly(hydroxy ester)-based fibrous scaffolds for tissue engineering applications. Acta Biomater 2:377–385

    Article  PubMed  Google Scholar 

  12. Pezeshki-modaress M, Rajabi-zeleti S, Zandi M et al (2013) Cell-loaded gelatin/chitosan scaffolds fabricated by salt-leaching/lyophilization for skin tissue engineering: in vitro and in vivo study. J Biomed Mater Res A 102:3908–3917

    Article  CAS  PubMed  Google Scholar 

  13. Pham QP, Sharma U, Mikos AG (2006) Electrospinning of polymeric nanofibers for tissue engineering applications: a review. Tissue Eng 12:1197–1211

    Article  CAS  PubMed  Google Scholar 

  14. Nasajpour A, Ansari S, Rinoldi C et al (2018) A multifunctional polymeric periodontal membrane with osteogenic and antibacterial characteristics. Adv Funct Mater 28:1–8

    Google Scholar 

  15. Priya ARS, Subramania A, Jung YS, Kim KJ (2008) High-performance quasi-solid-state dye-sensitized solar cell based on an electrospun PVdF-HFP membrane electrolyte. Langmuir 24:9816–9819

    Article  CAS  PubMed  Google Scholar 

  16. Kim JU, Park SH, Choi HJ, Choi HJ, Lee WK, Lee JK, Kim MR (2009) Effect of electrolyte in electrospun poly(vinylidene fluoride-co-hexafluoropropylene) nanofibers on dye-sensitized solar cells. Sol Energy Mater Sol Cells 93:803–807

    Article  CAS  Google Scholar 

  17. Seo SJ, Yun SH, Woo JJ, Park DW, Kang MS, Hinsch A, Moon SH (2011) Preparation and characterization of quasi-solid-state electrolytes using a brominated poly(2,6-dimethyl-1,4-phenylene oxide) electrospun nanofiber mat for dye-sensitized solar cells. Electrochem Commun 13:1391–1394

    Article  CAS  Google Scholar 

  18. Ding Y, Zhang P, Long Z, Jiang Y, Xu F, Di W (2009) The ionic conductivity and mechanical property of electrospun P(VdF-HFP)/PMMA membranes for lithium ion batteries. J Membr Sci 329:56–59

    Article  CAS  Google Scholar 

  19. Gopalan AI, Santhosh P, Manesh KM, Nho JH, Kim SH, Hwang CG, Lee KP (2008) Development of electrospun PVdF-PAN membrane-based polymer electrolytes for lithium batteries. J Membr Sci 325:683–690

    Article  CAS  Google Scholar 

  20. Prasanth R, Aravindan V, Srinivasan M (2012) Novel polymer electrolyte based on cob-web electrospun multi component polymer blend of polyacrylonitrile/poly(methyl methacrylate)/polystyrene for lithium ion batteries - Preparation and electrochemical characterization. J Power Sources 202:299–307

    Article  CAS  Google Scholar 

  21. Hakkak F, Rafizadeh M, Sarabi AA, Yousefi M (2015) Optimization of ionic conductivity of electrospun polyacrylonitrile/poly (vinylidene fluoride) (PAN/PVdF) electrolyte using the response surface method (RSM). Ionics (Kiel) 21:1945–1957

    Article  CAS  Google Scholar 

  22. Huang ZM, Zhang YZ, Kotaki M, Ramakrishna S (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 63:2223–2253

    Article  CAS  Google Scholar 

  23. Kim CS, Oh SM (2000) Importance of donor number in determining solvating ability of polymers and transport properties in gel-type polymer electrolytes. Electrochim Acta 45:2101–2109

    Article  CAS  Google Scholar 

  24. Nogueira AF, Longo C, De Paoli MA (2004) Polymers in dye sensitized solar cells: overview and perspectives. Coord Chem Rev 248:1455–1468

    Article  CAS  Google Scholar 

  25. Wieczorek W, Florjanczyk Z, Stevens JR (1995) Composite polyether based solid electrolytes. Electrochim Acta 40:2251–2258

    Article  CAS  Google Scholar 

  26. Zhang L, Hsieh Y-L (2006) Nanoporous ultrahigh specific surface polyacrylonitrile fibres. Nanotechnology 17:4416–4423

    Article  CAS  Google Scholar 

  27. Wieczorek W (1996) Composite polyether based solid electrolytes. The Lewis acid-base approach. Solid State Ion 85:67–72

    Article  CAS  Google Scholar 

  28. Chun-guey W, Chiung-hui W, Ming-i L, Huey-jan C (2006) New solid polymer electrolytes based on PEO/PAN hybrids. J Appl Polym Sci 99:1530–1540

    Article  CAS  Google Scholar 

  29. Abdollahi S, Ehsani M, Morshedian J, Khonakdar HA (2017) Morphology and physical properties of electrospun polyethylene oxide/polyacrylonitrile mats and related graphene-based nanocomposites. J Vinyl Addit Technol 23:E152–E159

    Article  CAS  Google Scholar 

  30. Yördem OS, Papila M, Menceloǧlu YZ (2008) Effects of electrospinning parameters on polyacrylonitrile nanofiber diameter: an investigation by response surface methodology. Mater Des 29:34–44

    Article  CAS  Google Scholar 

  31. Gu SY, Ren J, Vancso GJ (2005) Process optimization and empirical modeling for electrospun polyacrylonitrile (PAN) nanofiber precursor of carbon nanofibers. Eur Polym J 41:2559–2568

    Article  CAS  Google Scholar 

  32. Sarkar K, Ben GhaliaM, Wu Z, Bose SC (2009) A neural network model for the numerical prediction of the diameter of electro-spun polyethylene oxide nanofibers. J Mater Process Technol 209:3156–3165

    Article  CAS  Google Scholar 

  33. Henriques C, Vidinha R, Botequim D, Borges JP, Silva JAMC (2009) A systematic study of solution and processing parameters on nanofiber morphology using a new electrospinning apparatus. J Nanosci Nanotechnol 9:3535–3545

    Article  CAS  PubMed  Google Scholar 

  34. Pan W, Sun Y, Chen Y (2012) Preparation of polyacrylonitrile and polyethyleneglycol blend fibers through electrospinning. Optoelectron Adv Mater Rapid Commun 6:230–234

    CAS  Google Scholar 

  35. Ra EJ, An KH, Kim KK et al (2005) Anisotropic electrical conductivity of MWCNT/PAN nanofiber paper. Chem Phys Lett 413:188–193

    Article  CAS  Google Scholar 

  36. Moradi R, Karimi-Sabet J, Shariaty-Niassar M, Koochaki MA (2015) Preparation and characterization of polyvinylidene fluoride/graphene superhydrophobic fibrous films. Polymers 7:1444–1463

    Article  CAS  Google Scholar 

  37. Jia Y, Chen L, Yu H, Zhang Y, Dong F (2015) Graphene oxide/polystyrene composite nanofibers on quartz crystal microbalance electrode for the ammonia detection. RSC Adv 5:40620–40627

    Article  CAS  Google Scholar 

  38. Bao Q, Zhang H, Yang JX, Wang S, Tang DY, Jose R, Ramakrishna S, Lim CT, Loh KP (2010) Graphene-polymer nanofiber membrane for ultrafast photonics. Adv Funct Mater 20:782–791

    Article  CAS  Google Scholar 

  39. Wang Q, Du Y, Feng Q, Huang F, Lu K, Liu J, Wei Q (2013) Nanostructures and surface nanomechanical properties of polyacrylonitrile/graphene oxide composite nanofibers by electrospinning. J Appl Polym Sci 128:1152–1157

    Article  CAS  Google Scholar 

  40. Mack JJ, Viculis LM, Ali A et al (2005) Graphite nanoplatelet reinforcement of electrospun polyacrylonitrile nanofibers. Adv Mater 17:77–80

    Article  CAS  Google Scholar 

  41. Abdollahi S, Ehsani M, Morshedian J et al (2017) Structural and electrochemical properties of PEO/PAN nanofibrous blends: prediction of graphene localization. Polym Compos. https://doi.org/10.1002/pc.24390

    Article  Google Scholar 

  42. Cramariuc B, Cramariuc R, Scarlet R, Manea LR, Lupu IG, Cramariuc O (2013) Fiber diameter in electrospinning process. J Electrostat 71:189–198

    Article  CAS  Google Scholar 

  43. Keun W, Ho J, Seung T et al (2004) The effects of solution properties and polyelectrolyte on electrospinning of ultrafine poly(ethylene oxide) fibers. Polymer 45:2959–2966

    Article  CAS  Google Scholar 

  44. Yu JH, Fridrikh SV, Rutledge GC (2006) The role of elasticity in the formation of electrospun fibers. Polymer 47:4789–4797

    Article  CAS  Google Scholar 

  45. Basu S, Gogoi N, Sharma S, Jassal M, Agrawa AK (2013) Role of elasticity in control of diameter of electrospun PAN nanofibers. Fibers Polym 14:950–956

    Article  CAS  Google Scholar 

  46. Deitzel JM, Kleinmeyer J, Harris D, Tan B (2001) The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer 42:261–272

    Article  CAS  Google Scholar 

  47. Agarwal P, Mishra PK, Srivastava P (2012) Statistical optimization of the electrospinning process for chitosan/polylactide nanofabrication using response surface methodology. J Mater Sci 47:4262–4269

    Article  CAS  Google Scholar 

  48. Raghavan P, Zhao X, Kim JK, Manuel J, Chauhan GS, Ahn JH, Nah C (2008) Ionic conductivity and electrochemical properties of nanocomposite polymer electrolytes based on electrospun poly(vinylidene fluoride-co-hexafluoropropylene) with nano-sized ceramic fillers. Electrochim Acta 54:228–234

    Article  CAS  Google Scholar 

  49. Chan Y, Wang C, Chen C (2013) Quasi-solid DSSC based on a gel-state electrolyte of PAN with 2-D graphenes incorporated. J Mater Chem A 1:5479–5486

    Article  CAS  Google Scholar 

  50. Diwan P, Harms S, Raetzke K, Chandra A (2012) Polymer electrolyte-graphene composites: conductivity peaks and reasons thereof. Solid State Ion 217:13–18

    Article  CAS  Google Scholar 

  51. Zhang J, Han H, Wu S, Xu S, Yang Y, Zhou C, Zhao X (2007) Conductive carbon nanoparticles hybrid PEO/P(VDF-HFP)/SiO2 nanocomposite polymer electrolyte type dye sensitized solar cells. Solid State Ion 178:1595–1601

    Article  CAS  Google Scholar 

  52. Lee HB, Raghu A, Yoon KS, Jeong HM (2010) Preparation and characterization of poly(ethylene oxide)/graphene nanocomposites from an aqueous medium. J Macromol Sci Part B 49:802–809

    Article  CAS  Google Scholar 

  53. Chang YW, Lee KS, Lee YW, Bang JH (2015) Poly(ethylene oxide)/graphene oxide nanocomposites: structure, properties and shape memory behavior. Polym Bull 72:1937–1948

    Article  CAS  Google Scholar 

  54. Gao S, Zhong J, Xue G, Wang B (2014) Ion conductivity improved polyethylene oxide/lithium perchlorate electrolyte membranes modified by graphene oxide. J Membr Sci 470:316–322

    Article  CAS  Google Scholar 

  55. Kim M, Lee L, Jung Y, Kim S (2013) Study on ion conductivity and crystallinity of composite polymer electrolytes based on poly(ethylene oxide)/poly(acrylonitrile) containing nano-sized fillers. J Nanosci Nanotechnol 13:7865–7869

    Article  CAS  PubMed  Google Scholar 

  56. Strawhecker KE, Manias E (2003) Crystallization behavior of poly (ethylene oxide) in the presence of Na + montmorillonite fillers. Chem Mater 15:844–849

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morteza Ehsani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdollahi, S., Ehsani, M., Morshedian, J. et al. Application of response surface methodology in assessing the effect of electrospinning parameters on the morphology of polyethylene oxide/polyacrylonitrile blend nanofibers containing graphene oxide. Polym. Bull. 76, 1755–1773 (2019). https://doi.org/10.1007/s00289-018-2448-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-018-2448-1

Keywords

Navigation