Skip to main content
Log in

Gamma radiation-induced preparation of poly(1-vinyl-2-pyrrolidone-co-sodium acrylate) for effective removal of Co(II), Ni(II), and Cu(II)

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Clearing the water and wastewater from toxic heavy metals has received attentions from many researchers and scientists. In this study, poly(1-vinyl-2-pyrrolidone-co-sodium acrylate), P(VP-SA), was prepared by gamma radiation-induced copolymerization of VP and SA and utilized for the effective removal of cobalt(II), nickel(II), and copper(II) from their aqueous solutions. Effect of comonomer composition and concentration besides the adsorbed dose on the conversion percentage and the reduced viscosity was studied. The formed copolymer was characterized using Fourier transform infrared and gel permeation chromatography analysis, and the thermal stability was examined using thermogravimetric analysis. The influence of the adsorption conditions such as contact time, pH, copolymer concentration, and initial metal ion concentration on the metal ion binding capacity was tested. Pseudo-first-order, pseudo-second-order, and intraparticle diffusion adsorption models were used to explain the adsorption kinetics. Finally, the equilibrium adsorption data fitted well with Langmuir isotherm model, and the maximum adsorption amounts on P(VP-SA) copolymer calculated by Langmuir equation were 425.60, 93.01 and 450.81 mg g−1 for Cu+2, Ni+2, and Co+2, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Gode F, Pehlivan E (2003) A comparative study of two chelating ion exchange resins for the removal of chromium(III) from aqueous solution. J Hazard Mater B100:231–243

    Article  CAS  Google Scholar 

  2. Veli S, Alyüz B (2007) Adsorption of copper and zinc from aqueous solutions by using natural clay. J Hazard Mater 149:226–233

    Article  CAS  PubMed  Google Scholar 

  3. Schmuhl R, Krieg HM, Keizer K (2001) Adsorption of Cu(II) and Cr(IV) ions by chitosan: kinetics and equilibrium studies. Water SA 27:1–7

    CAS  Google Scholar 

  4. Chan SS, Chow H, Wong MH (1991) Microalgae as a bioabsorbents for treating mixture of electroplating and sewage effluent. Biomed Environ Sci 4:250–260

    CAS  PubMed  Google Scholar 

  5. Dabrowski A, Hubicki Z, Podkoscielny P, Robe E (2004) Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method. Chemosphere 56:91–106

    Article  CAS  PubMed  Google Scholar 

  6. Zhu Y, Hu J, Wang J (2014) Removal of Co2+ from radioactive wastewater by polyvinyl alcohol (PVA)/chitosan magnetic composite. Prog Nucl Energy 71:172–178

    Article  CAS  Google Scholar 

  7. Jiang JQ (2015) The role of coagulation in water treatment. Curr Opin Chem Eng 8:36–44

    Article  Google Scholar 

  8. Dao VH, Cameron NR, Saito K (2016) Synthesis, properties and performance of organic polymers employed in flocculation applications. Polym Chem 7(1):11–25

    Article  CAS  Google Scholar 

  9. Saleh AS, Ibrahim AG, Abdelhai F, Elsharma EM, Metwally E, Siyam T (2017) Preparation of poly (chitosan-acrylamide) flocculant using gamma radiation for adsorption of Cu (II) and Ni (II) ions. Radiat Phys Chem 134:33–39

    Article  CAS  Google Scholar 

  10. Saleh AS, Ibrahim AG, Elsharma EM, Metwally E, Siyam T (2018) Radiation grafting of acrylamide and maleic acid on chitosan and effective application for removal of Co (II) from aqueous solutions. Radiat Phys Chem 144:116–124

    Article  CAS  Google Scholar 

  11. El-Reash YA (2016) Magnetic chitosan modified with cysteine-glutaraldehyde as adsorbent for removal of heavy metals from water. J Environ Chem Eng 4:3835–3847

    Article  CAS  Google Scholar 

  12. Alyüz B, Veli S (2009) Kinetics and equilibrium studies for the removal of nickel and zinc from aqueous solutions by ion exchange resins. J Hazard Mater 167(1):482–488

    Article  CAS  PubMed  Google Scholar 

  13. Arena F, Di Chio R, Gumina B, Spadaro L, Trunfio G (2015) Recent advances on wet air oxidation catalysts for treatment of industrial wastewaters. Inorg Chim Acta 431:101–109

    Article  CAS  Google Scholar 

  14. Fane AG, Wang R, Hu MX (2015) Synthetic membranes for water purification: status and future. Angew Chem Int Ed 54(11):3368–3386

    Article  CAS  Google Scholar 

  15. Imran M, Crowley DE, Khalid A, Hussain S, Mumtaz MW, Arshad M (2015) Microbial biotechnology for decolorization of textile wastewaters. Rev Environ Sci Biotechnol 14(1):73–92

    Article  CAS  Google Scholar 

  16. Crees OL, Senogles E, Whayman E (1991) The flocculation of cane sugar muds with acrylamide–sodium acrylate copolymers. J Appl Polym Sci 42(3):837–844

    Article  CAS  Google Scholar 

  17. Craciun G, Ighigeanu D, Manaila E, Stelescu MD (2015) Synthesis and characterization of poly (acrylamide-co-acrylic acid) flocculant obtained by electron beam irradiation. Mater Res 18(5):984–993

    Article  CAS  Google Scholar 

  18. Abdiyev KZ, Toktarbay Z, Zhenissova AZ, Zhursumbaeva MB, Kainazarova RN, Nuraje N (2015) The new effective flocculants–Copolymers of N, N-dimethyl-N, N-diallyl-ammonium chloride and N, N-dimethylacrylamide. Colloids and Surf, A 480:228–235

    Article  CAS  Google Scholar 

  19. Pal P, Pandey JP, Sen G (2017) Synthesis of polyacrylamide grafted polyvinyl pyrollidone (PVP-g-PAM) and study of its application in algal biomass harvesting. Ecol Eng 100:19–27

    Article  Google Scholar 

  20. Yetimoğlu EK, Kahraman MV, Ercan Ö, Akdemir ZS, Apohan NK (2007) N-vinylpyrrolidone/acrylic acid/2-acrylamido-2-methylpropane sulfonic acid based hydrogels: synthesis, characterization and their application in the removal of heavy metals. React Funct Polym 67(5):451–460

    Article  CAS  Google Scholar 

  21. Ali AE, Shawky HA, El HAA, Hegazy EA (2003) Synthesis and characterization of PVP/AAc copolymer hydrogel and its applications in the removal of heavy metals from aqueous solution. Eur Polym J 39:2337–2344

    Article  CAS  Google Scholar 

  22. Nho YC, Park KR (2002) Preparation of properties of PVA/PVP hydrogel containing chitosan by radiation. J Appl Poly Sci 85:1787–1794

    Article  CAS  Google Scholar 

  23. Nud’ga LA, Petrova VA, Klishevich NV, Litvinova LS, Babenko AY, Shelegedin VN (2002) Synthesis and microbiological stability of graft copolymers of N-vinylpyrrolidone and chitosan. Russ J Appl Chem 75(10):1678–1682

    Article  Google Scholar 

  24. Ponratnam S, Kapur SL (1976) Effect of pH on the reactivity ratios in aqueous solution copolymerization of acrylic acid and N-vinylpyrrolidone. J Polym Sci-Part A: Polym Chem 14:1987–1992

    CAS  Google Scholar 

  25. Reddy BSS, Arshady R, George M (1985) Copolymerization of N-vinyl-2-pyrrolidone with 2,4,5-trichlorophenyl acrylate and with 2-hydroxyethyl methacrylate: reactivity ratios and molecular weights. Eur Polym J 21(6):511–515

    Article  CAS  Google Scholar 

  26. Sahiner N, Saraydın D, Karadag E, Güven O (1998) Swelling and dye adsorption properties of radiation induced N-vinyl-2-pyrrolidone/acrylonitrile hydrogels. Polym Bull 41:371–378

    Article  CAS  Google Scholar 

  27. Yildiz U, Ferkan Ö, Hazer B (2010) The removal of heavy metal ions from aqueous solutions by novel pH-sensitive hydrogels. J Hazard Mater 183(1–3):521–532

    Article  CAS  PubMed  Google Scholar 

  28. Jin S, Gu J, Shi Y, Shao K, Yu X, Yue G (2013) Preparation and electrical sensitive behavior of poly (N-vinylpyrrolidone- co-acrylic acid) hydrogel with flexible chain nature. Eur Polym J 49(7):1871–1880

    Article  CAS  Google Scholar 

  29. Hemalatha P, Veeraiah MK, Kumar SP, Madegowda NM, Manju M (2014) Reactivity Ratios of N-Vinylpyrrolidone -Acrylic Acid Copolymer. Am J Polym Sci 4(1):16–23

    CAS  Google Scholar 

  30. Collins EA, Bares J, Billmeyer FW (1973) Experiments in Polymer Science. John Wiley & Sons, New York

    Google Scholar 

  31. Dinu MV, Dragan ES (2010) Evaluation of Cu2+, Co2+ and Ni2+ ions removal from aqueous solution using a novel chitosan/clinoptilolite composite: kinetics and isotherms. Chem Eng J 160(1):157–163

    Article  CAS  Google Scholar 

  32. Chapiro A (1962) Radiation chemistry of polymeric systems. Wiley-Interscience, New York

    Google Scholar 

  33. Cristallini C, Barbani N, Giusti P, Lazzeri L, Cascone MG, Ciardelli G (2001) Polymerisation onto biological templates, a new way to obtain bioartificial polymeric materials. Macromol Chem Phys 202(10):2104–2113

    Article  CAS  Google Scholar 

  34. Wang JP, Chen YZ, Ge XW, Yu HQ (2007) Gamma radiation-induced grafting of a cationic monomer onto chitosan as a flocculant. Chemosphere 66(9):1752–1757

    Article  CAS  PubMed  Google Scholar 

  35. Dubinsky S, Grader GS, Shter GE, Silverstein MS (2004) Thermal degradation of poly (acrylic acid) containing copper nitrate. Polym Degrad Stab 86(1):171–178

    Article  CAS  Google Scholar 

  36. Chapiro A (1979) Radiation induced polymerization. Radiat Phys Chem 14(1–2):101–116

    CAS  Google Scholar 

  37. Anirudhan TS, Rijith S, Tharun AR (2010) Adsorptive removal of thorium (IV) from aqueous solutions using poly (methacrylic acid)-grafted chitosan/bentonite composite matrix: process design and equilibrium studies. Colloids Surf A 368(1):13–22

    Article  CAS  Google Scholar 

  38. Essawy HA, Ibrahim HS (2004) Synthesis and characterization of poly(vinylpyrrolidone-co-methylacrylate) hydrogel for removal and recovery of heavy metal ions from wastewater. React Funct Polym 61:421–432

    Article  CAS  Google Scholar 

  39. Schweitzer GK, Pesterfield LL (2010) The aqueous chemistry of the elements. Oxford University Press, Oxford

    Google Scholar 

  40. Wu N, Li Z (2013) Synthesis and characterization of poly(HEA/MALA) hydrogel and its application in removal of heavy metal ions from water. Chem Eng J 215–216:791–801

    Google Scholar 

  41. Kalyani S, Priya JA, Rao PS, Krishnaiah A (2005) Removal of copper and nickel from aqueous solutions using chitosan coated on perlite as biosorbent. Sep Sci Technol 40(7):1483–1495

    Article  CAS  Google Scholar 

  42. Chen H, Wang A (2009) Adsorption characteristics of Cu (II) from aqueous solution onto poly(acrylamide)/attapulgite composite. J Hazard Mater 165:223–231

    Article  CAS  PubMed  Google Scholar 

  43. Ho YS, Mckay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34:451–465

    Article  CAS  Google Scholar 

  44. Huh JK, Song DI, Jeon YW (2000) Sorption of phenol and alkylphenols from aqueous solution onto organically modified montmorillonite and applications of dual-mode sorption model. Sep Sci Technol 35:243–259

    Article  CAS  Google Scholar 

  45. Karthik R, Meenakshi S (2015) Removal of Pb(II) and Cd(II) ions from aqueous solution using polyaniline grafted chitosan. Chem Eng J 263:168–177

    Article  CAS  Google Scholar 

  46. Ali EA, Elkholy SS, Morsi RE, Elsabee MZ (2016) Studies on adsorption behavior of Cu (II) and Cd (II) onto aminothiophene derivatives of Styrene Maleic anhydride copolymer. J Taiwan Inst Chem Eng 64:325–335

    Article  CAS  Google Scholar 

  47. Langmuir I (1918) The adsorption of gases on lane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361–1403

    Article  CAS  Google Scholar 

  48. Freundlich HMF (1906) Over the adsorption in solution. J Phys Chem 57:385–470

    CAS  Google Scholar 

Download references

Acknowledgements

Support of this study by the Department of Nuclear Chemistry, Atomic Energy Authority, Inshas, Egypt, is gratefully appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Galal Ibrahim.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

GPC curve of P(VP-SA) copolymer ([VP] = 6% (V/V), [SA] = 2.6% (V/V), VP:SA = 7:3 and dose = 4 kGy) (TIFF 37 kb)

Fig. S2

Adsorption kinetics of (a): Cu+2, (b): Ni+2, and (c): Co+2 onto P(VP-SA) copolymer by pseudo-first order (TIFF 17 kb)

Fig. S3

Adsorption kinetics of (a): Cu+2, (b): Ni+2, and (c): Co+2 onto P(VP-SA) copolymer by pseudo-second order (TIFF 35 kb)

Fig. S4

Adsorption kinetics of (a): Cu+2, (b): Ni+2, and (c): Co+2 onto P(VP-SA) copolymer by intraparticle diffusion (TIFF 35 kb)

Fig. S5

Langmuir isotherm for the adsorption of (a): Cu+2, (b): Ni+2, and (c): Co+2 onto P(VP-SA) copolymer (TIFF 17 kb)

Fig. S6

Freundlich isotherm for the adsorption of (a): Cu+2, (b): Ni+2, and (c): Co+2 onto P(VP-SA) copolymer (TIFF 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ibrahim, A.G., Saleh, A.S., Elsharma, E.M. et al. Gamma radiation-induced preparation of poly(1-vinyl-2-pyrrolidone-co-sodium acrylate) for effective removal of Co(II), Ni(II), and Cu(II). Polym. Bull. 76, 303–322 (2019). https://doi.org/10.1007/s00289-018-2379-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-018-2379-x

Keywords

Navigation