Skip to main content
Log in

In situ gelation behavior of thermoresponsive poly(N-vinylpyrrolidone)/poly(N-isopropylacrylamide) microgels synthesized by soap-free emulsion polymerization

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Poly(N-vinylpyrrolidone)/poly(N-isopropylacrylamide) (PVP/PNIPAM) microgels were successfully synthesized by soap-free emulsion polymerization of N-isopropylacrylamide monomer in the presence of PVP, using an anionic radical initiator and a chemical crosslinker. The dried microgels exhibited nonspherical morphology and submicron size with good monodispersity. In aqueous phase, the microgels shrank when elevating temperature, displaying a negatively thermoresponsive nature with volume phase transition temperature (VPTT) of ca. 33.1 °C. The microgel dispersions remained colloidally stable even being heated far above their VPTT but gelled with the addition of electrolyte. Such thermo-induced in situ gelation behavior was studied in detail by small-deformation oscillatory rheological measurements within the linear viscoelastic region. The dynamic temperature ramp sweeps showed that the gelation temperature decreased independently as the polymer content or electrolyte concentration was increased. The isothermal time sweeps were performed to study the gelation kinetics. It was found that the microgel dispersions formed gel more quickly at larger polymer content, larger electrolyte concentration and higher temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Guan Y, Zhang YJ (2011) PNIPAM microgels for biomedical applications: from dispersed particles to 3D assemblies. Soft Matter 7:6375–6384

    Article  CAS  Google Scholar 

  2. Appel J, Lange N, Kooij HM, Laar T, Hove JB, Kodger TE, Sprakel J (2015) Temperature controlled sequential gelation in composite microgel suspensions. Part Part Syst Charact 32:764–770

    Article  CAS  Google Scholar 

  3. Işiklan N, Küçükbalcı G (2016) Synthesis and characterization of pH- and temperature-sensitive materials based on alginate and poly(N-isopropylacrylamide)/acrylic acid) for drug delivery. Polym Bull 73:1321–1342

    Article  CAS  Google Scholar 

  4. Zhao YB, Zheng CS, Wang Q, Fang JL, Zhou GF, Zhao H, Yang YJ, Xu HB, Feng GS, Yang XL (2011) Permanent and peripheral embolization: temperature-sensitive p(N-isopropylacrylamide-co-butyl methylacrylate) nanogels as a novel blood-vessel-embolic materials in the interventional therapy of liver tumors. Adv Funct Mater 21:2035–2042

    Article  CAS  Google Scholar 

  5. Xiong W, Gao X, Zhao YB, Xu HB, Yang XL (2011) The dual temperature/pH-sensitive multiphase behavior of poly(N-isopropylacrylamide-co-acrylic acid) microgels for potential application in in situ gelling system. Colloid Surf B 84:103–110

    Article  CAS  Google Scholar 

  6. Zhou J, Wang GN, Zou L, Tang LP, Marquez M, Hu ZB (2008) Viscoelastic behavior and in vivo release study of microgel dispersions with inverse thermoreversible gelation. Biomacromol 9:142–148

    Article  CAS  Google Scholar 

  7. Wang Q, Xu HB, Yang XL, Yang YJ (2008) Drug release behavior from in situ gelatinized thermosensitive nanogel aqueous dispersions. Int J Pharm 361:189–193

    Article  CAS  PubMed  Google Scholar 

  8. Wang Q, Zhao YB, Yang YJ, Xu HB, Yang XL (2007) Thermosensitive phase behavior and drug release of in situ gelable poly(N-isopropylacrylamide-co-acrylamide) microgels. Colloid Polym Sci 285:515–521

    Article  CAS  Google Scholar 

  9. Gan TT, Guan Y, Zhang YJ (2010) Thermogelable PNIPAM microgel dispersion as 3D cell scaffold: effect of syneresis. J Mater Chem 20:5937–5944

    Article  CAS  Google Scholar 

  10. Gu JJ, Zhao YN, Guan Y, Zhang YJ (2015) Effect of particle size in colloidal hydrogel scaffold for 3D cell culture. Colloid Surf B 136:1139–1147

    Article  CAS  Google Scholar 

  11. Cheng D, Wu YH, Guan Y, Zhang YJ (2012) Tuning properties of injectable hydrogel scaffold by PEG blending. Polymer 53:5124–5131

    Article  CAS  Google Scholar 

  12. Gan TT, Zhang YJ, Guan Y (2009) In situ gelation of P(NIPAM-HEMA) dispersion and its applications as injectable 3D cell scaffold. Biomacromolecues 10:1410–1415

    Article  CAS  Google Scholar 

  13. Cui X, Dini S, Dai S, Bi J, Binder BJ, Green JEF, Zhang H (2016) A mechanistic study on tumor spheroid formation in thermosensitive hydrogels: experiments and mathematical modeling. RSC Adv 6:73282–73291

    Article  CAS  Google Scholar 

  14. Shen ZY, Mellati A, Bi JX, Zhang H, Dai S (2014) A thermally responsive cationic nanogel-based platform for three-dimensional cell culture and recovery. RSC Adv 4:29146–29156

    Article  CAS  Google Scholar 

  15. Lou SF, Wang L, Williams GR, Nie HL, Quan J, Zhu LM (2014) Galactose functionalized injectable thermoresponsive microgels for sustained protein release. Colloid Surf B 113:368–374

    Article  CAS  Google Scholar 

  16. Garrec DL, Gori S, Luo L, Lessard D, Smith DC, Yessine MA, Ranger M, Leroux JC (2004) Poly(N-vinylpyrrolidone)-block-poly(d, l-lactide) as a new polymeric solubilizer for hydrophobic anticancer drugs: in vitro and in vivo evaluation. J Controlled Release 99:83–101

    Article  CAS  Google Scholar 

  17. Krezović BD, Miljković MG, Stojanović ST, Najman SJ, Filipović JM, Tomić SL (2017) Structural, thermal, mechanical, swelling, drug release, antibacterial and cytotoxic properties of P(HEA/IA)/PVP semi-IPN hydrogels. Chem Eng Res Des 121:368–380

    Article  CAS  Google Scholar 

  18. Akdemir ZS, Kayaman-Apohan NK (2007) Investigation of swelling, drug release and diffusion behaviors of poly(N-isopropylacrylamide)/poly(N-vinylpyrrolidone) full-IPN hydrogels. Polym Adv Tech 18:932–939

    Article  CAS  Google Scholar 

  19. Pound G, Mckenzie JM, Lange RFM, Klumperman B (2008) Polymer-protein conjugates from ω-aldehyde endfunctional poly(N-vinylpyrrolidone) synthesised via xanthate-mediated living radical polymerisation. Chem Commun 27(27):3193–3195

    Article  CAS  Google Scholar 

  20. Chen GX, Liu JX, Yang YD, Zhang LJ, Wu M, Ni HM (2015) Preparation of pH-sensitive nanoparticles of poly(methacrylic acid)(PMAA)/poly(vinyl pyrrolidone)(PVP) by ATRP-template miniemulsion polymerization in the aqueous solution. Colloid Polym Sci 293:2035–2044

    Article  CAS  Google Scholar 

  21. Peng H, Rübsam K, Jakob F, Schwaneberg U, Pich A (2016) Tunable enzymatic activity and enhanced stability of cellulose immobilized in biohybrid nanogels. Biomacromol 17:3619–3631

    Article  CAS  Google Scholar 

  22. Yao XK, Xie C, Chen WZ, Yang CC, Wu W, Jiang XQ (2015) Platinum-incorporating poly(N-vinylpyrrolidone)-poly(aspartic acid) pseudoblock copolymer nanoparticles for drug delivery. Biomacromolecules 16:2059–2071

    Article  CAS  PubMed  Google Scholar 

  23. Yang Q, Wang K, Nie JJ, Du BY, Tang GP (2014) Poly(N-vinylpyrrolidone) microgels: preparation, biocompatibility and potential application as drug carriers. Biomacromol 15:2285–2293

    Article  CAS  Google Scholar 

  24. Cong HL, Li L, Zheng SX (2013) Poly(N-isopropylacrylamide)-block-poly(vinyl pyrrolidone) block copolymer networks: synthesis and rapid thermoresponse of hydrogels. Polymer 54:1370–1380

    Article  CAS  Google Scholar 

  25. Geever LM, Mínguez CM, Devine DM, Nugent MJD, Kennedy JE, Lyones JG, Hanley A, Devery S, Tomkins PT, Higginbotham CL (2007) The synthesis, swelling behavior and rheological properties of chemically crosslinked thermosensitive copolymers based on N-isopropylacrylamide. J Mater Sci 42:4136–4148

    Article  CAS  Google Scholar 

  26. Geever LM, Devine DM, Nugent MJD, Kennedy JE, Lyones JG, Hanley A, Higginbotham CL (2006) Lower critical solution temperature control and swelling behavior of physically crosslinked thermosensitive copolymers based on N-isopropylacrylamide. Eur Polym J 42:2540–2548

    Article  CAS  Google Scholar 

  27. Cong HL, Li JG, Li L, Zheng SX (2014) Thermoresponsive gelation behavior of poly(N-isopropylacrylamide)-block-poly(N-vinylpyrrolidone)-block-poly(N-isopropylacrylamide) triblock copolymers. Eur Polym J 61:23–32

    Article  CAS  Google Scholar 

  28. Higgins W, Kozlovskaya V, Alford A, Ankner J, Kharlampieva E (2016) Stratified temperature-responsive multilayer hydrogels of poly(N-vinylpyrrolidone) and poly(N-vinylcaprolactam): effect of hydrogel architecture on properties. Macromolecules 49:6953–6964

    Article  CAS  Google Scholar 

  29. Gilbert T, Smeets NMB, Hoare T (2015) Injectable interpenetrating network hydrogels via kinetically orthogonal reactive mixing of functionalized polymeric precursors. ACS Macro Lett 4:1104–1109

    Article  CAS  Google Scholar 

  30. Zhu ZS, Li Y, Li XL, Li RT, Jia ZJ, Liu BR, Guo WH, Wu W, Jiang XQ (2010) Paclitaxel-loaded poly(N-vinylpyrrolidone)-b-poly(ε-caprolactone) nanoparticles: preparation and antitumor activity in vivo. J Controlled Release 142:438–446

    Article  CAS  Google Scholar 

  31. Zhu ZS, Xie C, Liu Q, Zhen X, Zheng XC, Wu W, Li RT, Ding Y, Jiang XQ, Liu BR (2011) The effect of hydrophilic chain length and iRGD on drug delivery from poly(ε-caprolactone)-poly(N-vinylpyrrolidone) nanoparticles. Biomaterials 32:9525–9535

    Article  CAS  PubMed  Google Scholar 

  32. Kuskov AN, Kulikov PP, Goryachaya AV, Tzatzarakis MN, Docea AO, Velonia K, Shtilman MI, Tsatsakis AM (2017) Amphiphilic poly-N-vinylpyrrolidone nanoparticles as carriers for non-steroidal, anti-inflammatory drugs: in vitro cytotoxicity and in vivo acute toxicity study. Nanomed Nanotechnol 13:1021–1030

    Article  CAS  Google Scholar 

  33. Ding Y, Gao J, Yang XY, He J, Zhou ZY, Hu Y (2014) Preparation of water dispersible, fluorescent Ag–PAA–PVP hybrid nanogels and their optical properties. Adv Powder Technol 25:244–249

    Article  CAS  Google Scholar 

  34. El-Rehim HAA, Hegazy ESA, Hamed AA, Swilem AE (2013) Controlling the size and swellability of stimuli-responsive polyvinylpyrrolidone-poly(acrylic acid) nanogels synthesized by gamma radiation-induced template polymerization. Eur Polym J 49:601–612

    Article  CAS  Google Scholar 

  35. Rehmani S, Ahmad M, Minhas MU, Anwar H, Zangi MI, Sohail M (2017) Development of natural and synthetic polymer-based semi-interpenetrating polymer network for controlled drug delivery: optimization and in vitro evaluation studies. Polym Bull 74:737–761

    Article  CAS  Google Scholar 

  36. Huma F, Akhter Z, Yasin T, Zafar-uz-Zamman M, Manan A (2014) Crosslinking of poly(N-vinylpyrrolidone-co-n-butyl methacrylate) copolymers for controlled drug delivery. Polym Bull 71:433–451

    Article  CAS  Google Scholar 

  37. Li XY, Weng JY, Guan Y, Zhang YJ (2016) Fabrication of large-area two-dimensional microgel colloidal crystals via interfacial thiol-ene click reaction. Langmuir 32:3977–3982

    Article  CAS  PubMed  Google Scholar 

  38. Ghorbani M, Hamishehkar H, Arsalani N, Entezami AA (2015) Preparation of thermo and pH-responsive polymer@Au/Fe3O4 core/shell nanoparticles as a carrier for delivery of anticancer agent. J Nanopart Res 17:305

    Article  CAS  Google Scholar 

  39. Hoare T, Pelton R (2004) Functional group distributions in carboxylic acid containing poly(N-isopropylacrylamide) microgels. Langmuir 20:2123–2133

    Article  CAS  PubMed  Google Scholar 

  40. Shi S, Wang T, Bian LN, Zhou LM, Zhao LQ, Kuroda SI (2011) Nonspherical dented poly(methyl methacrylate)/poly(styrene-co-divinylbenzene) particles formed in seeded soap-free emulsion copolymerization. J Mater Sci 46:7214–7222

    Article  CAS  Google Scholar 

  41. Wang ZF, Wang T, Bian LN, Zhou LM, Shi S, Kuroda SI (2011) Preparation of micron-sized nonspherical polystyrene/poly(styrene-co-ethyleneglycol dimethacrylate) particles by seeded soap-free emulsion polymerization. Chinese J Polym Sci 29:634–638

    Article  CAS  Google Scholar 

  42. Shi S, Wang QM, Wang T, Ren SP, Gao Y, Wang N (2014) Thermo-, pH-, and light-responsive poly(N-isopropylacrylamide-co-methacrylic acid)-Au hybrid microgels prepared by the in situ reduction method based on Au-thiol chemistry. J Phys Chem B 118:7177–7186

    Article  CAS  PubMed  Google Scholar 

  43. Shi S, Zhang L, Wang T, Wang QM, Gao Y, Wang N (2013) Poly(N-isopropylacrylamide)-Au hybrid microgels: synthesis, characterization, thermally tunable optical and catalytic properties. Soft Matter 9:10966–10970

    Article  CAS  Google Scholar 

  44. Tung CYM, Dynes PJ (1982) Relationship between viscoelastic properties and gelation in thermosetting systems. J Appl Polym Sci 27:569–574

    Article  CAS  Google Scholar 

  45. Li L, Thangamathesvaran PM, Yue CY, Tam KC, Hu X, Lam YC (2001) Gel network structure of methylcellulose in water. Langmuir 17:8062–8068

    Article  CAS  Google Scholar 

  46. O’Kane FE, Happe RP, Vereijken JM, Gruppen H, Boekel MAJS (2004) Heat-induced gelation of pea legumin: comparison with soybean glycinin. J Agric Food Chem 52:5071–5078

    Article  CAS  PubMed  Google Scholar 

  47. Liao W, Zhang YJ, Guan Y, Zhu XX (2011) Gelation kinetics of thermosensitive PNIPAM microgel dispersions. Macromol Chem Phys 212:2052–2060

    Article  CAS  Google Scholar 

  48. Wang T, Jin L, Song YN, Li JX, Gao Y, Shi S (2017) Rheological study on the thermoinduced gelation behavior of poly(N-isopropylacrylamide-co-acrylic acid) microgel suspensions. J Appl Polym Sci 134:45259

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (50943028, 51573100), and the Program for Liaoning Excellent Talents in University (LJQ2011037).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shan Shi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1346 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Jin, L., Zhang, Y. et al. In situ gelation behavior of thermoresponsive poly(N-vinylpyrrolidone)/poly(N-isopropylacrylamide) microgels synthesized by soap-free emulsion polymerization. Polym. Bull. 75, 4485–4498 (2018). https://doi.org/10.1007/s00289-018-2271-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-018-2271-8

Keywords

Navigation