Skip to main content

Advertisement

Log in

Alizarin red: a reactive dye to enhance nanoengineered polypyrrole with high electrochemical energy storage

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

High-performance supercapacitors require the molecular-level linkage of charge transport components and charge-storage components. In this work, polypyrrole (PPy) was prepared via in situ chemical oxidative polymerization in the presence of a reactive dye (alizarin red S, ARS) which could play the role of both dopant and physical cross linker for pyrrole polymerization. The effects of ARS concentration on morphology, structure, electrical conductivity, and electrochemical performance were studied. When the feeding ratio of pyrrole: ARS was 2:1, the as-prepared ARS-doped PPy sample exhibited a high-mass-specific capacitance of 319 F/g at a current density of 1.0 A/g. All PPy–ARS electrodes possessed excellent capacitance retention. Especially, the specific capacitance of the sample with the highest ARS content increased by 18% of its initial value after 2000 cycles. The results demonstrated that the multifunctional dye ARS could effectively improve the performances of PPy as an electrode material for supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Xiao FS, Yang Z, Zhang H et al (2015) Scalable synthesis of freestanding sandwich-structured graphene/polyaniline/graphene nanocomposite paper for flexible all-solid-state supercapacitor. Sci Rep 5:9359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Radja I, Djelad H, Morallon E et al (2015) Characterization and electrochemical properties of conducting nanocomposites synthesized from p-anisidine and aniline with titanium carbide by chemical oxidative method. Synth Met 202:25–32

    Article  CAS  Google Scholar 

  3. Chouli F, Zehhaf A, Benyoucef A (2014) Preparation and characterization of the new conducting composites obtained from 2-methylaniline and Aniline with activated carbon by in situ intercalative oxidative polymerization. Macromol Res 22:26–31

    Article  CAS  Google Scholar 

  4. Tang H, Wang J, Yin H (2015) Growth of polypyrrole ultrathin films on MoS2 monolayers as high-performance supercapacitor electrodes. Adv Mater 27:1117–1123

    Article  CAS  PubMed  Google Scholar 

  5. Benykhlef S, Bekhoukh A, Berenguer R et al (2016) PANI-derived polymer/Al2O3 nanocomposites: synthesis, characterization, and electrochemical studies. Colloid Polym Sci 294:1877–1885

    Article  CAS  Google Scholar 

  6. Gürbüz O, Filiz B, Orhan Ş et al (2016) Structural, optical and electrical properties of polypyrrole in an ionic liquid. Polym Bull. doi:10.1007/s00289-016-1856-3

    Article  Google Scholar 

  7. Dahou FZ, Khaldi MA, Zehhaf A et al (2016) Nanocomposite of 2-aminophenol with aniline using copper-montmorillonite: synthesis, characterization, conductivity, and electrochemical study. Adv Polym Tech 35:411–418

    Article  CAS  Google Scholar 

  8. Davoglio RA, Biaggio SR, Bocchi N et al (2013) Flexible and high surface area composites of carbon fiber, polypyrrole, and poly (DMCT) for supercapacitor electrodes. Electrochim Acta 93:93–100

    Article  CAS  Google Scholar 

  9. Zhao H, Hou L, Lu Y (2016) Electromagnetic shielding effectiveness and serviceability of the multilayer structured cuprammonium fabric/polypyrrole/Copper (CF/PPy/Cu) composite. Chem Eng J 297:170–179

    Article  CAS  Google Scholar 

  10. Kim YY, Yun J, Kim HI et al (2012) Effect of oxyfluorination on electromagnetic interference shielding of polypyrrole-coated multi-walled carbon nanotubes. J Ind Eng Chem 18:392–398

    Article  CAS  Google Scholar 

  11. Lee JS, Jun J, Shin DN et al (2014) Urchin-like polypyrrole nanoparticles for highly sensitive and selective chemiresistive sensor application. Nanoscale 6:4188–4194

    Article  CAS  PubMed  Google Scholar 

  12. Okuzaki H, Kuwabara T, Funasaka K, Saido T (2013) Humidity-sensitive polypyrrole films for electro-active polymer actuators. Adv Funct Mater 23:4400–4407

    Article  CAS  Google Scholar 

  13. Zheng WG, Alici R, Clingan BJ et al (2013) Polypyrrole stretchable actuators. J Polym Sci Pol Phys 51:57–63

    Article  CAS  Google Scholar 

  14. Yang C, Zang LM, Qiu JH et al (2014) Nano-Cladding of natural microcrystalline cellulose with conducting polymer: preparation, characterization, and application in energy storage. RSC Adv 4:40345–40351

    Article  CAS  Google Scholar 

  15. Lang XQ, Wan C, Feng X et al (2010) The role of anthraquinone sulfonate dopants in promoting performance of polypyrrole composites as pseudo-capacitive electrode materials. Synth Met 160:1800–1804

    Article  CAS  Google Scholar 

  16. Herrmann S, Aydemir N, Nägele F et al (2017) Enhanced capacitive energy storage in polyoxometalate-doped polypyrrole. Adv Funct Mater. doi:10.1002/adfm.201700881

    Article  Google Scholar 

  17. Milczarek G, Inganas O (2012) Renewable cathode materials from biopolymer/conjugated polymer interpenetrating networks. Science 335:1468–1471

    Article  CAS  PubMed  Google Scholar 

  18. Yang C, Liu P (2009) Water-dispersed conductive polypyrroles doped with lignosulfonate and the weak temperature dependence of electrical conductivity. Ind Eng Chem Res 48:9498–9503

    Article  CAS  Google Scholar 

  19. Halls JE, Ahn SD, Jiang D et al (2013) Proton uptake vs. redox driven release from metal-organic-frameworks: alizarin red s reactivity in Umcm-1. J Electroanal Chem 689:168–175

    Article  CAS  Google Scholar 

  20. Zhu Y, Shi K, Zhitomirsky I (2014) Anionic dopant-dispersants for synthesis of polypyrrole coated carbon nanotubes and fabrication of supercapacitor electrodes with high active mass loading. J Mater Chem A 2:14666–14673

    Article  CAS  Google Scholar 

  21. Zang LM, Qiu JH, Yang C et al (2015) Enhanced conductivity and electrochemical performance of electrode material based on multifunctional dye doped polypyrrole. J Nanosci Nanotechnol 16:2564–2570

    Article  CAS  Google Scholar 

  22. Yalçınkaya S, Demirbilek C, Özdemir Dinç C (2015) Preparation and characterization of polypyrrole/dextran sulphate composite: its electrochemical and thermal behaviors. Polym Bull 72:2843–2855

    Article  CAS  Google Scholar 

  23. Lang XQ, Wan C, Feng X et al (2010) The role of anthraquinone sulfonate dopants in promoting performance of polypyrrole composites as pseudo-capacitive electrode materials. Synth Met 160:1800–1804

    Article  CAS  Google Scholar 

  24. Wan QY, Fan SS, Yue XJ et al (2010) Improved capacitive performance of polypyrrole doped with 9,10-anthraquinone-2-sulfonic acid sodium salt. Acta Phys Chim Sin 26:2951–2956

    CAS  Google Scholar 

  25. Sun W, Zhou Y, Su Q et al (2016) Removal Of chromium (VI) from aqueous solutions using polypyrrole-based magnetic composites. Polym Bull. doi:10.1007/s00289-016-1769-1

    Article  Google Scholar 

  26. Zang LM, Qiu JH, Yang C et al (2015) In situ preparation of polypyrrole nanorod composite in the presence of phosphorylated polyvinyl alcohol. Adv Polym Technol. doi:10.1002/adv.21497

    Article  Google Scholar 

  27. Moriguchi T, Yano K, Nakagawa N et al (2003) Elucidation Of adsorption mechanism of bone-staining agent alizarin red s on hydroxyapatite by Ft–Ir microspectroscopy. J Colloid Interface Sci 260:19–25

    Article  CAS  PubMed  Google Scholar 

  28. Moulder JF (1995) Handbook of X-ray photoelectron spectroscopy: a reference book of standard spectra for identification and interpretation of xPS data. Physical Electronics, Chanhassen, pp 40–56

    Google Scholar 

  29. Kim DY, Lee JY, Kim CY et al (1995) Difference in doping behavior between polypyrrole films and powders. Synth Met 72:243–248

    Article  CAS  Google Scholar 

  30. Mondal S, Sangaranarayanan MV (2015) A novel, rapid synthetic protocol for controllable sizes, conductivities and monomer units of soluble polypyrrole. Eur Polym J 71:596–611

    Article  CAS  Google Scholar 

  31. Luo JJ, Lu QF (2015) Controllable preparation and heavy-metal-ion adsorption of lignosulfonate-polypyrrole composite nanosorbent. Polym Compos 36:1546–1556

    Article  CAS  Google Scholar 

  32. Xing S, Zhao G (2006) Morphology And thermostability of polypyrrole prepared from SDBS aqueous solution. Polym Bull 57:933–943

    Article  CAS  Google Scholar 

  33. Taunk M, Kapil A, Chand S (2011) Chemical synthesis and low temperature electrical transport in polypyrrole doped with sodium bis(2-ethylhexyl) sulfosuccinate. J Mater Sci Mater Electron 22:136–142

    Article  CAS  Google Scholar 

  34. Omastova M, Trchova M, Pionteck H et al (2004) EFfect of polymerization conditions on the properties of polypyrrole prepared in the presence of sodium bis(2-ethylhexyl) sulfosuccinate. Synth Met 143:153–161

    Article  CAS  Google Scholar 

  35. Yang C, Wang X, Wang Y et al (2012) Polypyrrole nanoparticles with high dispersion stability via chemical oxidative polymerization in presence of an anionic–non-ionic bifunctional polymeric surfactant. Powder Technol 217:134–139

    Article  CAS  Google Scholar 

  36. Algharaibeh Z, Liu X, Pickup PG (2009) An asymmetric anthraquinone-modified carbon/ruthenium oxide supercapacitor. J Power Sources 187:640–643

    Article  CAS  Google Scholar 

  37. Kalinathan K, DesRoches DP, Liu X et al (2008) Anthraquinone modified carbon fabric supercapacitors with improved energy and power densities. J Power Sources 181:182–185

    Article  CAS  Google Scholar 

  38. Bard AJ, Fualkner LR (2000) Electrochemicalmethods: fundamentals and applications, 2nd edn. Wiley, Hoboken

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51303035); the Foundation of Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang University (2015BCE005); and the Collaborative Innovation Center for Exploration of Hidden Nonferrous Metal Deposits and Development of New Materials in Guangxi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zang, L., Liu, Q., Yang, C. et al. Alizarin red: a reactive dye to enhance nanoengineered polypyrrole with high electrochemical energy storage. Polym. Bull. 75, 3311–3323 (2018). https://doi.org/10.1007/s00289-017-2211-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-017-2211-z

Keywords

Navigation