Skip to main content
Log in

Stereocomplex crystallization behavior and physical properties of polyesterurethane networks incorporating diglycerol-based enantiomeric 4-armed lactide oligomers and a 1,3-propanediol-based 2-armed rac-lactide oligomer

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The reactions of diglycerol-based 4-armed enantiomeric lactide oligomers (DG4LLAO and DG4DLAO, DGDLAO/DGLLAO = 1/1) and a 1,3-propanediol-based 2-armed rac-lactide oligomer (PD2racLAO) with hexamethylene diisocyanate produced bio-based polyesterurethane networks (PEU-DG4scLAO/PD2racLAOs) with different feed ratios of stereocomplex (sc) lactide oligomer (DG4scLAO = DG4DLAO + DG4LLAO) and PD2racLAO. Crystallization behavior and physical properties of PEU-DG4scLAO/PD2racLAOs were compared with those of the corresponding pentaerythritol- and glycerol-based polyesterurethane networks (PEU-PE4scLAO and PEU-GC4scLAO) with no PD2racLAO fraction. The X-ray diffraction analysis revealed that sc crystallites were formed without any homo-crystallization for PEU-DG4scLAO/PD2racLAOs 100/0-25/75 in a similar manner to PEU-PE4scLAO or PEU-GC3scLAO. Differential scanning calorimetric analysis for PEU-DG4scLAO/PD2racLAOs 100/0-25/75 revealed that the sc crystallites were not regenerated during a cold crystallization process of the quenched samples, but regenerated by isothermal crystallization from the melt. This result was a marked contrast to the previous result that sc crystallites were almost completely regenerated by the cold crystallization for PEU-PE4scLAO and PEU-GC3scLAO. Polarized optical microscopic analysis revealed that the incorporation of 25% of PD2racLAO enhanced the sc-nucleation efficiency, and further addition caused the reduction of overall crystallization. PEU-DG4scLAO/PD2racLAO 100/0 exhibited a higher elongation at break and tensile toughness than PEU-PE4scLAO and PEU-GC3scLAO. Tensile strength and elongation at break for PEU-DG4scLAO/PD2racLAOs decreased with increasing feed of PD2racLAO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Iwata T (2015) Biodegradable and bio-based polymers: future prospects of eco-friendly plastics. Angew Chem Int Ed 54:3210–3215

    Article  CAS  Google Scholar 

  2. Yao K, Tang C (2013) Controlled polymerization of next-generation renewable monomers and beyond. Macromolecules 46:1689–1712

    Article  CAS  Google Scholar 

  3. Babu RP, O’Connor K, Seeram R (2013) Current progress on bio-based polymers and their future trends. Prog Biomater 2:8. doi:10.1186/2194-0517-2-8

    Article  Google Scholar 

  4. Wilbon PA, Chu F, Tang C (2013) Progress in renewable polymers from natural terpenes, terpenoids, and rosin. Macromol Rapid Commun 34:8–37

    Article  CAS  Google Scholar 

  5. Farah S, Anderson DG, Langer R (2016) Physical and mechanical properties of PLA, and their functions in widespread applications—a comprehensive review. Adv Drug Deliver Rev. doi:10.1016/j.addr.2016.012

    Google Scholar 

  6. Raquez JM, Habibi Y, Murariu M, Dubois P (2013) Polylactide (PLA)-based nanocomposites. Prog Polym Sci 38:1504–1542

    Article  CAS  Google Scholar 

  7. Yi Q, Wen X, Li L, He B, Nie Y, Wu Y, Zhang Z, Gu Z (2009) The chiral effects on the responses of osteoblastic cells to the polymeric substrates. Eur Polym J 45:1970–1978

    Article  CAS  Google Scholar 

  8. Tsuji H (2005) Poly(lactide) stereocomplexes: formation, structure, properties, degradation, and applications. Macromol Biosci 5:569–597

    Article  CAS  Google Scholar 

  9. Tsuji H (2016) Poly(lactic acid) stereocomplexes: a decade of progress. Adv Drug Deliver Rev. doi:10.1016/j.addr.2016.04.017

    Google Scholar 

  10. Ikada Y, Jamshidi K, Tsuji H, Hyon SH (1987) Stereocomplex formation between enantiomeric poly(lactides). Macromolecules 20:904–906

    Article  CAS  Google Scholar 

  11. Tsuji H, Ikada Y (1999) Stereocomplex formation between enantiomeric poly(lactic acid)s. XI. Mechanical properties and morphology of solution-cast films. Polymer 40:6699–6708

    Article  CAS  Google Scholar 

  12. Tsuji H, Fukui I (2003) Enhanced thermal stability of poly(lactide)s in the melt by enantiomeric polymer blending. Polymer 44:2891–2896

    Article  CAS  Google Scholar 

  13. Tsuji H (2000) In vitro hydrolysis of blends from enantiomeric poly(lactide)s Part 1. Well-stereo-complexed blend and non-blended films. Polymer 41:3621–3630

    CAS  Google Scholar 

  14. Yui N, Dijkstra PJ, Feijen J (1990) Stereo block copolymers of l- and d-lactides. Macromol Chem 191:481–488

    Article  CAS  Google Scholar 

  15. Li L, Zhong Z, Jeu WH, Dijkstra PJ, Feijen J (2004) Crystal structure and morphology of poly(l-lactide-b-d-lactide) diblock copolymers. Macromolecules 37:8641–8646

    Article  CAS  Google Scholar 

  16. Hu J, Tang Z, Qiu X, Pang X, Yang Y, Chen X, Jing X (2005) Formation of flower- or cake-shaped stereocomplex particles from the stereo multiblock copoly(rac-lactide)s. Biomacromolecules 6:2843–2850

    Article  CAS  Google Scholar 

  17. Hirata M, Kobayashi K, Kimura Y (2010) Synthesis and properties of high-molecular-weight stereo di-block polylactides with nonequivalent D/L ratios. J Polym Sci, Part A: Polym Chem 48:794–801

    Article  CAS  Google Scholar 

  18. Othma, N, Xu C, Mehrkhodavandi P. Hatzikiriakos SG (2012) Thermorheological and mechanical behavior of polylactide and its enantiomeric diblock copolymers and blends. Polymer 53:2443–2452

  19. Aluthge DC, Xu C, Othman N, Noroozi N, Hatzikiriakos SG, Mehrkhodavandi P (2013) PLA–PHB–PLA Triblock copolymers: synthesis by sequential addition and investigation of mechanical and rheological properties. Macromolecules 46:3965–3974

    Article  CAS  Google Scholar 

  20. Tsuji H, Tajima T (2014) Crystallization behavior of stereo diblock poly(lactide)s with relatively short poly(d-lactide) segment from partially melted state. Macromol Mater Eng 299:1089–1105

    CAS  Google Scholar 

  21. Mincheva R, Leclére Ph, Habibi Y, Raquez JM, Dubois P (2014) Preparation of narrowly dispersed stereocomplex nanocrystals: a step towards all-poly(lactic acid) nanocomposites. J Mater Chem A 2:7402–7409

    Article  CAS  Google Scholar 

  22. Biela T, Duda A, Penczek S (2006) Enhanced melt stability of star-shaped stereocomplexes as compared with linear stereocomplexes. Macromolecules 39:3710–3713

    Article  CAS  Google Scholar 

  23. Isono T, Kondo Y, Otsuka I, Nishiyama Y, Borsali R, Kakuchi T, Satoh T (2013) Synthesis and stereocomplex formation of star-shaped stereoblock polylactides consisting of poly(l-lactide) and poly(d-lactide) arms. Macromolecules 46:8509–8518

    Article  CAS  Google Scholar 

  24. Shao J, Tang Z, Sun J, Li G, Chen X (2014) Linear and 4-armed poly(l-lactide)-block-poly(d-lactide) copolymers and their stereocomplexation with poly(lactide). J Polym Sci, Part B: Polym Phys 52:1560–1567

    Article  CAS  Google Scholar 

  25. Tsuji H, Yamashita Y (2014) Highly accelerated stereocomplex crystallization by blending star-shaped 4-armed stereo diblock poly(lactide)s with poly(d-lactide) and poly(l-lactide) cores. Polymer 55:6444–6450

    Article  CAS  Google Scholar 

  26. Ma Y, Li W, Li L, Fan Z, Li S (2014) Stereocomplexed three-arm PPO–PDLA–PLLA copolymers: synthesis via an end-functionalized initiator. Eur Polym J 55:27–34

    Article  CAS  Google Scholar 

  27. Isono T, Kondo Y, Ozawa S, Chen Y, Sakai R, Sato S, Tajima K, Kakuchi T, Satoh T (2014) Stereoblock-like brush copolymers consisting of poly(l-lactide) and poly(d-lactide) side chains along poly(norbornene) backbone: synthesis, stereocomplex formation, and structure–property relationship. Macromolecules 47:7118–7128

    Article  CAS  Google Scholar 

  28. Sugai N, Yamamoto T, Tezuka Y (2012) Synthesis of orientationally isomeric cyclic stereoblock polylactides with head-to-head and head-to-tail linkages of the enantiomeric segments. ACS Macro Lett 1:902–906

    Article  CAS  Google Scholar 

  29. Shibata M, Katoh M, Takase H, Shibita A (2015) Stereocomplex formation in stereoblock copolymer networks composed of 4-armed star-shaped lactide oligomers and a 2-armed ɛ-caprolactone oligomer. Polym Chem 6:4123–4132

    Article  CAS  Google Scholar 

  30. Shibita A, Kawasaki S, Shimasaki T, Teramoto N, Shibata M (2016) Stereocomplexation in copolymer networks incorporating enantiomeric glycerol-based 3-armed lactide oligomers and a 2-armed ɛ-caprolactone oligomer. Materials 9:591. doi:10.3390/ma9070591

    Article  Google Scholar 

  31. Shibita A, Shimasaki T, Teramoto N, Shibata M (2015) Conetworks composed of 4-armed star-shaped l-lactide oligomer and 4-armed star-shaped ɛ-caprolactone oligomer. Polymer 74:54–62

    Article  CAS  Google Scholar 

  32. Li Y, Han C, Zhang X, Dong Q, Dong L (2013) Effects of molten poly(d, l-lactide) on nonisothermal crystallization in stereocomplex of poly(l-lactide) with poly(d-lactide). Thermochim Acta 573:193–199

    Article  CAS  Google Scholar 

  33. Li Y, Han C, Bian XY, Dong Q, Zha H, Zhang X, Xu M, Dong L (2014) Miscibility, thermal properties and polymorphism of stereocomplexation of high-molecular-weight polylactide/poly(d, l-lactide) blends. Thermochim Acta 580:53–62

    Article  CAS  Google Scholar 

  34. Tsuji H, Nakano M, Hashimoto M, Takashima K, Katsura S, Mizuno A (2006) Electrospinning of poly(lactic acid) stereocomplex nanofibers. Biomacromolecules 7:3316–3320

    Article  CAS  Google Scholar 

  35. Petchsuk A, Buchatip S, Supmak W, Opaprakasit M, Opaprakasit P (2014) Preparation and properties of multi-branched poly(d-lactide) derived from polyglycidol and its stereocomplex blends. Express Polym Lett 8:779–789

    Article  CAS  Google Scholar 

  36. Fukushima K, Kimura Y (2006) Stereocomplexed polylactides (Neo-PLA) as high-performance bio-based polymers: their formation, properties, and application. Polym Int 55:626–642

    Article  CAS  Google Scholar 

  37. Hoogsteen W, Postema AR, Pennings AJ, Brinke GT, Zugenmaier P (1990) Crystal structure, conformation and morphology of solution-spun poly(l-lactide) fibers. Macromolecules 23:634–642

    Article  CAS  Google Scholar 

  38. Chen CC, Chueh JY, Tseng H, Huang HM, Lee SY (2003) Preparation and characterization of biodegradable PLA polymeric blends. Bimater 24:1167–1173

    Article  CAS  Google Scholar 

  39. Kopinke FD, Remmler M, Mackenzie K, Moder M, Wachsen O (1996) Thermal decomposition of biodegradable polyesters-II. Poly(lactic acid). Polym Degrad Stab 53:329–342

    Article  CAS  Google Scholar 

  40. Wachsen O, K. Reichert H, Kruger RP, Much H, Schulz G (1997) Thermal decomposition of biodegradable polyesters-III. Studies on the mechanisms of thermal degradation of oligo-l-lactide using SEC, LACCC and MALDI-TOF-MS. Polym Degrad Stab 55:225–231

Download references

Acknowledgements

We thank Dr. Naozumi Teramoto and Dr. Toshiaki Shimasaki of our department for their helpful suggestions. We are also grateful to Mr. Ryusuke Osada of the Material Analysis Center at the Chiba Institute of Technology for assisting in the XRD analysis reported here.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitsuhiro Shibata.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 258 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shibita, A., Mizumura, Y. & Shibata, M. Stereocomplex crystallization behavior and physical properties of polyesterurethane networks incorporating diglycerol-based enantiomeric 4-armed lactide oligomers and a 1,3-propanediol-based 2-armed rac-lactide oligomer. Polym. Bull. 74, 3139–3160 (2017). https://doi.org/10.1007/s00289-016-1890-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-016-1890-1

Keywords

Navigation