Skip to main content

Advertisement

Log in

Synthesis and characterization of agarose–bacterial cellulose biodegradable composites

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Agarose is an abundant and biodegradable polymer with strength comparable or higher than other commonly used natural polymers. Agarose can be used for wound dressing and tissue engineering applications. Excessive water uptake and moderate strength limit its applicability for various applications. The objective of this study was to enhance its strength by reinforcing with bacterial cellulose. The addition of bacterial cellulose exhibited remarkable enhancement of 140% in the tensile strength of agarose bioplastic. The strength increased from 25.1 MPa for agarose bioplastic to a maximum of 60.2 MPa for 20% (w/w) of bacterial cellulose. There was a decrease in the amount of water absorption; at 37 °C, the composite films absorbed 450% of their own weight of water, as against 700% absorption by un-reinforced bioplastic films at the same temperature. Thermogravimetric analysis did not reveal any perceivable change in the thermal stability of the bioplastic. Biodegradability of composite films was also established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

UTS:

Ultimate tensile strength

HBC:

Homogenized bacterial cellulose

TGA:

Thermogravimetric analysis

References

  1. Zhang Y, Yuan X, Thompson MR, Liu Q (2012) Characterization of extruded film based on thermoplastic potato flour. J Appl Polym Sci 125:3250–3258

    Article  CAS  Google Scholar 

  2. Mohanty AK, Tummala P, Liu W, Misra M, Mulukutla PV, Drzal LT (2005) Injection molded biocomposites from soy protein based bioplastic and short industrial hemp fiber. J Polym Environ 13:279–285

    Article  CAS  Google Scholar 

  3. Gonzalez-Gutierrez J, Partal P, Garcia-Morales M, Gallegos C (2010) Development of highly-transparent protein/starch-based bioplastics. Bioresour Technol 101:2007–2013

    Article  CAS  Google Scholar 

  4. Vadori R, Mohanty AK, Misra M (2013) The effect of mold temperature on the performance of injection molded poly (lactic acid)-based bioplastic. Macromol Mater Eng 298:981–990

    Article  CAS  Google Scholar 

  5. Kumaravel S, Hema R, Lakshmi R (2010) Production of polyhydroxybutyrate (bioplastic) and its biodegradation by Pseudomonas lemoignei and Aspergillus niger. J Chem 7:S536–S542

    CAS  Google Scholar 

  6. Zarrinbakhsh N, Misra M, Mohanty AK (2011) Biodegradable green composites from distiller’s dried grains with solubles (DDGS) and a polyhydroxy (butyrate-co-valerate)(PHBV)-based bioplastic. Macromol Mater Eng 296:1035–1045

    Article  CAS  Google Scholar 

  7. Singh S, Mohanty AK (2007) Wood fiber reinforced bacterial bioplastic composites: fabrication and performance evaluation. Compos Sci Technol 67:1753–1763

    Article  CAS  Google Scholar 

  8. Reddy N, Yang Y (2010) Citric acid cross-linking of starch films. Food Chem 118:702–711

    Article  CAS  Google Scholar 

  9. Hutmacher D, Goh J, Teoh S (2001) An introduction to biodegradable materials for tissue engineering applications. Ann Acad Med Singap 30:183–191

    CAS  Google Scholar 

  10. Şentürk SB, Kahraman D, Alkan C, Gökçe İ (2011) Biodegradable PEG/cellulose, PEG/agarose and PEG/chitosan blends as shape stabilized phase change materials for latent heat energy storage. Carbohydr Polym 84:141–144

    Article  Google Scholar 

  11. Tabata M, Shimoda T, Sugihara K, Ogomi D, Serizawa T, Akashi M (2003) Osteoconductive and hemostatic properties of apatite formed on/in agarose gel as a bone-grafting material. J Biomed Mater Res B Appl Biomater 67:680–688

    Article  Google Scholar 

  12. Dias AB, Müller CMO, Larotonda FDS, Laurindo JB (2010) Biodegradable films based on rice starch and rice flour. J Cereal Sci 51:213–219

    Article  CAS  Google Scholar 

  13. Funke U, Bergthaller W, Lindhauer MG (1998) Processing and characterization of biodegradable products based on starch. Polym Degrad Stab 59:293–296

    Article  CAS  Google Scholar 

  14. Bao X, Hayashi K, Li Y, Teramoto A, Abe K (2010) Novel agarose and agar fibers: fabrication and characterization. Mater Lett 64:2435–2437

    Article  CAS  Google Scholar 

  15. Sánchez-Salcedo S, Nieto A, Vallet-Regí M (2008) Hydroxyapatite/β-tricalcium phosphate/agarose macroporous scaffolds for bone tissue engineering. Chem Eng J 137:62–71

    Article  Google Scholar 

  16. Lewitus DY, Smith KL, Landers J, Neimark AV, Kohn J (2014) Bioactive agarose carbon-nanotube composites are capable of manipulating brain–implant interface. J Appl Polym Sci 131:40297–40304

    Article  Google Scholar 

  17. Li X, Gao H, Scrivens WA, Fei D, Thakur V, Sutton MA, Reynolds AP, Myrick ML (2005) Structural and mechanical characterization of nanoclay-reinforced agarose nanocomposites. Nanotechnology 16:2020

    Article  CAS  Google Scholar 

  18. Le Goff KJ, Gaillard C, Helbert W, Garnier C, Aubry T (2015) Rheological study of reinforcement of agarose hydrogels by cellulose nanowhiskers. Carbohydr Polym 116:117–123

    Article  Google Scholar 

  19. Awadhiya A, Kumar D, Verma V (2016) Crosslinking of agarose bioplastic using citric acid. Carbohydr Polym 151:60–67

    Article  CAS  Google Scholar 

  20. Yang CX, Gao C, Wan YZ, Tang TT, Zhang SH, Dai KR (2011) Preparation and characterization of three-dimensional nanostructured macroporous bacterial cellulose/agarose scaffold for tissue engineering. J Porous Mater 18:545–552

    Article  CAS  Google Scholar 

  21. Fernandez-Cossio S, Leon-Mateos A, Sampedro FG, Oreja MT (2007) Biocompatibility of agarose gel as a dermal filler: histologic evaluation of subcutaneous implants. Plast Reconstr Surg 120:1161–1169

    Article  CAS  Google Scholar 

  22. Kao JM, Rose R, Yousef M, Hunter SK, Rodgers VG (1999) In vivo biocompatibility evaluation of Cibacron blue-agarose. J Biomed Mater Res 47:537–542

    Article  CAS  Google Scholar 

  23. Shankar S, Rhim J-W (2016) Preparation of nanocellulose from micro-crystalline cellulose: the effect on the performance and properties of agar-based composite films. Carbohydr Polym 135:18–26

    Article  CAS  Google Scholar 

  24. Rhim J-W, Reddy JP, Luo X (2015) Isolation of cellulose nanocrystals from onion skin and their utilization for the preparation of agar-based bio-nanocomposites films. Cellulose 22:407–420

    Article  CAS  Google Scholar 

  25. Leitner J, Hinterstoisser B, Wastyn M, Keckes J, Gindl W (2007) Sugar beet cellulose nanofibril-reinforced composites. Cellulose 14:419–425

    Article  CAS  Google Scholar 

  26. Oishi Y, Nakaya M, Matsui E, Hotta A (2015) Structural and mechanical properties of cellulose composites made of isolated cellulose nanofibers and poly (vinyl alcohol). Compos A Appl Sci Manuf 73:72–79

    Article  CAS  Google Scholar 

  27. Sonker AK, Tiwari N, Nagarale RK, Verma V (2016) Synergistic effect of cellulose nanowhiskers reinforcement and dicarboxylic acids crosslinking towards polyvinyl alcohol properties. J Polym Sci Part A Polym Chem 54:2515–2525

    Article  CAS  Google Scholar 

  28. Favier V, Canova GR, Cavaillé JY, Chanzy H, Dufresne A, Gauthier C (1995) Nanocomposite materials from latex and cellulose whiskers. Polym Adv Technol 6:351–355

    Article  CAS  Google Scholar 

  29. Gabr MH, Elrahman MA, Okubo K, Fujii T (2010) A study on mechanical properties of bacterial cellulose/epoxy reinforced by plain woven carbon fiber modified with liquid rubber. Compos A Appl Sci Manuf 41:1263–1271

    Article  Google Scholar 

  30. Li M-C, Wu Q, Song K, Lee S, Qing Y, Wu Y (2015) Cellulose nanoparticles: structure–morphology–rheology relationships. ACS Sustain Chem Eng 3:821–832

    Article  CAS  Google Scholar 

  31. Deng F, Ge X, Zhang Y, Li MC, Cho UR (2015) Synthesis and characterization of microcrystalline cellulose-graft-poly (methyl methacrylate) copolymers and their application as rubber reinforcements. J Appl Polym Sci 132:42666–42675

    Google Scholar 

  32. Favi PM, Ospina SP, Kachole M, Gao M, Atehortua L, Webster TJ (2016) Preparation and characterization of biodegradable nano hydroxyapatite–bacterial cellulose composites with well-defined honeycomb pore arrays for bone tissue engineering applications. Cellulose 23:1263–1282

    Article  CAS  Google Scholar 

  33. Kirdponpattara S, Khamkeaw A, Sanchavanakit N, Pavasant P, Phisalaphong M (2015) Structural modification and characterization of bacterial cellulose–alginate composite scaffolds for tissue engineering. Carbohydr Polym 132:146–155

    Article  CAS  Google Scholar 

  34. Chang W-S, Chen H-H (2016) Physical properties of bacterial cellulose composites for wound dressings. Food Hydrocolloids 53:75–83

    Article  CAS  Google Scholar 

  35. Yin N, Stilwell MD, Santos TM, Wang H, Weibel DB (2015) Agarose particle-templated porous bacterial cellulose and its application in cartilage growth in vitro. Acta Biomater 12:129–138

    Article  CAS  Google Scholar 

  36. El-Saied H, El-Diwany AI, Basta AH, Atwa NA, El-Ghwas DE (2008) Production and characterization of economical bacterial cellulose. Bioresources 3:1196–1217

    CAS  Google Scholar 

  37. Hestrin S, Schramm M (1954) Synthesis of cellulose by Acetobacter xylinum. 2. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose. Biochem J 58:345

    Article  CAS  Google Scholar 

  38. Ohad I, Danon D, Hestrin S (1962) Synthesis of cellulose by Acetobacter xylinum V. Ultrastructure of polymer. J Cell Biol 12:31–46

    Article  CAS  Google Scholar 

  39. Brown RM, Willison JH, Richardson CL (1976) Cellulose biosynthesis in Acetobacter xylinum: visualization of the site of synthesis and direct measurement of the in vivo process. Proc Natl Acad Sci 73:4565–4569

    Article  CAS  Google Scholar 

  40. Guhados G, Wan W, Hutter JL (2005) Measurement of the elastic modulus of single bacterial cellulose fibers using atomic force microscopy. Langmuir 21:6642–6646

    Article  CAS  Google Scholar 

  41. Wan YZ, Hong L, Jia SR, Huang Y, Zhu Y, Wang YL, Jiang HJ (2006) Synthesis and characterization of hydroxyapatite–bacterial cellulose nanocomposites. Compos Sci Technol 66:1825–1832

    Article  CAS  Google Scholar 

  42. Yano H, Sugiyama J, Nakagaito AN, Nogi M, Matsuura T, Hikita M, Handa K (2005) Optically transparent composites reinforced with networks of bacterial nanofibers. Adv Mater 17:153–155

    Article  CAS  Google Scholar 

  43. Gardner DJ, Oporto GS, Mills R, Samir MASA (2008) Adhesion and surface issues in cellulose and nanocellulose. J Adhes Sci Technol 22:545–567

    Article  CAS  Google Scholar 

  44. Hsieh YC, Yano H, Nogi M, Eichhorn SJ (2008) An estimation of the Young’s modulus of bacterial cellulose filaments. Cellulose 15:507–513

    Article  CAS  Google Scholar 

  45. Awadhiya A, Tyeb S, Rathore K, Verma V (2016) Agarose bioplastic based drug delivery system for surgical and wound dressings. Eng Life Sci. doi:10.1002/elsc.201500116

    Google Scholar 

  46. Srithongkham S, Vivitchanont L, Krongtaew C (2012) Starch/cellulose biocomposites prepared by high-shear homogenization/compression molding. J Mater Sci Eng B 2:213–222

    CAS  Google Scholar 

  47. Lee S-Y, Mohan D, Kang I-A, Doh G-H, Lee S, Han S (2009) Nanocellulose reinforced PVA composite films: effects of acid treatment and filler loading. Fibers Polym 10:77–82

    Article  CAS  Google Scholar 

  48. Roohani M, Habibi Y, Belgacem NM, Ebrahim G, Karimi AN, Dufresne A (2008) Cellulose whiskers reinforced polyvinyl alcohol copolymers nanocomposites. Eur Polym J 44:2489–2498

    Article  CAS  Google Scholar 

  49. Phua SL, Yang L, Toh CL, Huang S, Tsakadze Z, Lau SK, Mai Y-W, Lu X (2012) Reinforcement of polyether polyurethane with dopamine-modified clay: the role of interfacial hydrogen bonding. ACS Appl Mater Interfaces 4:4571–4578

    Article  CAS  Google Scholar 

  50. Zhang W, Dehghani-Sanij AA, Blackburn RS (2008) IR study on hydrogen bonding in epoxy resin–silica nanocomposites. Prog Nat Sci 18:801–805

    Article  CAS  Google Scholar 

  51. Aztatzi-Pluma D, Castrejón-González EO, Almendarez-Camarillo A, Alvarado JF, Duran-Morales Y (2016) Study of the molecular interactions between functionalized carbon nanotubes and chitosan. J Phys Chem C 120:2371–2378

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Jeffrey M. Catchmark of the Pennsylvania State University for kindly providing A. xylinum bacteria. The research was supported by DST-SERB (SR/S3/CE/038/2012) and DBT (BT/PR14121/BRB/10/813/201). We thank Prof. M. L. N. Rao of Chemistry department at IIT Kanpur for discussion on FTIR data. Laser cutting was done at 4i laboratories, mechanical testing was performed at Structures laboratory in Aerospace Engineering department of IIT Kanpur, scanning electron microscopy was conducted in Materials Science and Engineering department of IIT Kanpur, and thermogravimetric analysis was performed in Chemical Engineering department of IIT Kanpur. Mr. Sankalp Verma and Ms. Suboohi Shervani aided in the scanning electron microscopy of the samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivek Verma.

Ethics declarations

Conflict of interest

The authors declare competing financial interest. AA and VV have filed for an Indian patent with Application Number 906/DEL/2015 dated March 31, 2015 and an international patent with Application Number PCT/IB2015/053216 on May 02, 2015. The work demonstrated here is part of the patent.

Funding

AA and DK are supported by institute fellowship from IIT Kanpur. This work was supported through DST-SERB (SR/S3/CE/038/2012) and DBT (BT/PR14121/BRB/10/813/201) Grants.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 294 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Awadhiya, A., Kumar, D., Rathore, K. et al. Synthesis and characterization of agarose–bacterial cellulose biodegradable composites. Polym. Bull. 74, 2887–2903 (2017). https://doi.org/10.1007/s00289-016-1872-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-016-1872-3

Keywords

Navigation