Skip to main content
Log in

Antibacterial and antitumor activities of 3-amino-phenyl-4(3H)-quinazolinone/polypyrrole chitosan core shell nanoparticles

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

3-Amino-2-phenyl-4(3H)-quinazolinone (I) was prepared and loaded on polypyrrole chitosan (PPC) core shell nanoparticles (PPCI). The formation of core shell PPC nanoparticles were observed by transmission electron microscopy (TEM). The interaction between I and the synthesized PPC core shell nanoparticle was studied by Fourier transform infrared (FT-IR) spectroscopy. The average particle size of the PPC was 13 and 33 nm after loading I as determined by Scherer equation from X-ray diffraction (XRD) analysis. The synthesized PPCI exhibited antibacterial activity against gram negative as well as gram positive bacteria. In addition, the amount of loaded quinazolinone was calculated by thermal gravimetric analysis (TGA). The released amount of quinazolinone in different pH (2, 7.4) media and the mechanism of release by applying different model equations were studied. Moreover, the in vitro effect of the nanoparticles on Erlich ascites carcinoma (EAC) cells was enhanced after loading I.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ji J, Wu D, Liu L, Chen J, Xu Y (2011) Preparation, characterization and in vitro release of folic acid-conjugated chitosan nanoparticles loaded with methotrexate for targeted delivery. Polym Bull 68(6):1707–1720

    Article  Google Scholar 

  2. Moreno PMD, Santos JC, Gomes PC, Varela-Moreira A, Costa A, Leiro V, Mansur H, Pêgo AP (2016) Delivery of splice switching oligonucleotides by amphiphilic chitosan-based nanoparticles. Mol Pharm 2:344–356

    Article  Google Scholar 

  3. Bernkop-Schnürch A, Dünnhaupt S (2012) Chitosan-based drug delivery systems. Eur J Pharm Biopharm 81:463–469

    Article  Google Scholar 

  4. Yalcınkay S, Demetgul C, Timur M, Colak N (2010) Electrochemical synthesis and characterization of polypyrrole/chitosan composite on platinum electrode: its electrochemical and thermal behaviors. Carbohydr Polym 79:908–913

    Article  Google Scholar 

  5. Wang T, Ji X, Jin L, Feng Z, Wu J, Zheng J, Wang H, Xu ZW, Guo L, He N (2013) Fabrication and characterization of heparin-grafted poly-l-lactic acid-chitosan core–shell nanofibers scaffold for vascular gasket. ACS Appl Mater Interfaces 5(9):3757–3763

    Article  CAS  Google Scholar 

  6. Attia MF, Anton N, Khan IU, Serra CA, Messaddeq N, Jakhmola A, Vecchione R, Vandamme T (2016) One-step synthesis of iron oxide polypyrrole nanoparticles encapsulating ketoprofen as model hydrophobic drug. Int J Pharm. doi:10.1016/j.ijpharm.2016.04.073

    Google Scholar 

  7. Zare EN, Lakouraj MM, Mohseni M (2014) Biodegradable polypyrrole/dextrin conductive nanocomposite: synthesis, characterization, antioxidant and antibacterial activity. Synt Met 187:9–16

    Article  Google Scholar 

  8. Sirivisoot S, Pareta R, Webster TJ (2011) Electrically controlled drug release from nanostructured polypyrrole coated on titanium. Nanotechnology 22:85–101

    Article  Google Scholar 

  9. Fang Y, Ni Y, Zhang G, Mao C, Huang X, Shen J (2012) Biocompatibility of CS-PPy nanocomposites and their application to glucose biosensor. Bioelectrochemistry 88:1–7

    Article  CAS  Google Scholar 

  10. Huang H, Wu J, Lin X, Li L, Shang S, Yuen MC, Yan G (2013) Self-assembly of polypyrrole/chitosan composite hydrogels. Carbohydr Polym 95(1):72–76

    Article  CAS  Google Scholar 

  11. Wang X, Zhou CX, Yan JW, Hou JQ, Chen SB, Ou TM, Gu LQ, Huang ZS, Tan JH (2013) Synthesis and evaluation of quinazolone derivatives as a new class of c-KIT G-quadruplex binding ligands. ACS Med Chem Lett 4(10):909–914

    Article  CAS  Google Scholar 

  12. Ameta U, Ojha S, Bhambi D, Talesara GL (2006) Synthetic studies on some 3-[(5-arylidene-4-oxo-1;3-thiazolidin-2-yliden)amino]-2-phenylquinazolin-4(3H)-ones and their ethoxyphthalimide derivatives. ARKIVOC 2006:83–89

    Google Scholar 

  13. Gao X, Cai X, Yan K, Song B, Gao L, Chen Z (2007) Synthesis and antiviral bioactivities of 2-aryl- or 2-methyl-3-(substituted- benzalamino)-4(3H)-quinazolinone derivatives. Molecules 12(12):2621–2642

    Article  CAS  Google Scholar 

  14. Korsmeyer RW, Gurny R, Doelker EM, Buri P, Peppas NA (1983) Mechanism of solute release from porous hydrophilic polymers. Int J Pharm 15:25–35

    Article  CAS  Google Scholar 

  15. You P, Xing F, Huo J, Wang B, Di J, Zeng S, Liu J (2013) In vitro and in vivo evaluation of anisomycin against Ehrlich ascites carcinoma. Oncol Rep 29(6):2227–2236

    CAS  Google Scholar 

  16. Ali SW, Rajendran S, Joshi M (2011) Synthesis and characterization of chitosan and silver loaded chitosan nanoparticles for bioactive polyester. Carbohydr Polym 83:438–446

    Article  CAS  Google Scholar 

  17. Cabuka M, Alan Y, Yavuz M, Unal HI (2014) Synthesis, characterization and antimicrobial activity of biodegradable conducting polypyrrole-graft-chitosan copolymer. Appl Surf Sci 318:168–175

    Article  Google Scholar 

  18. Williams DH, Fleming I (1980) Spectroscopic methods in organic chemistry, 3rd edn. McGraw-Hill, London

    Google Scholar 

  19. Li Y, Li G, Peng H, Chen K (2011) Facile synthesis of electroactive polypyrrole–chitosan composite nanospheres with controllable diameters. Polym Int 60:647–651

    Article  CAS  Google Scholar 

  20. Vivek R, Nipun Babu V, Thangama R, Subramanian KS, Kannan S (2013) pH-responsive drug delivery of chitosan nanoparticles as Tamoxifen carriers for effective anti-tumor activity in breast cancer cells. Colloids Surf B 111:117–123

    Article  CAS  Google Scholar 

  21. Lim EK, Huh YM, Yang J, Lee K, Suh JS, Haam S (2011) pH-triggered drug-releasing magnetic nanoparticles for cancer therapy guided by molecular imaging by MRI. Adv Mater 23(21):2436–2442

    Article  CAS  Google Scholar 

  22. Boomi P, Prabu HG, Mathiyarasu J (2013) Synthesis and characterization of polyaniline/Ag–Pt nanocomposite for improved antibacterial activity. Colloids Surf B 103:9–14

    Article  CAS  Google Scholar 

  23. Varesano A, Vineis C, Aluigi A, Rombaldoni F, Tonetti C, Mazzuchetti G (2013) Antibacterial efficacy of polypyrrole in textile applications. Fiber Polym 14:36–42

    Article  CAS  Google Scholar 

  24. Fischer D, Li Y, Ahlemeyer B, Krieglstein J, Kissel T (2003) In vitro cytotoxicity testing of polycations: influence of polymer structure on cell viability and hemolysis. Biomaterials 24:1121–1131

    Article  CAS  Google Scholar 

  25. Alexander LM, Pernagallo S, Livigni A, Sánchez-Martín RM, Brickman JM, Bradley M (2010) Investigation of microsphere-mediated cellular delivery by chemical, microscopic and gene expression analysis. Mol BioSyst 6(2):399–409

    Article  CAS  Google Scholar 

  26. Ma N, Ma C, Li C, Wang T, Tang Y, Wang H, Moul X, Chen Z, Hel N (2013) Influence of nanoparticle shape, size, and surface functionalization on cellular uptake. J Nanosci Nanotechnol 13(10):6485–6498

    Article  CAS  Google Scholar 

  27. Liu J, Xu L, Liu C, Zhang D, Wang S, Deng Z, Lou W, Xu H, Bai Q, Ma J (2012) Preparation and characterization of cationic curcumin nanoparticles for improvement of cellular uptake. Carbohydr Polym 90(1):16–22

    Article  CAS  Google Scholar 

  28. Jiang M, Gan L, Zhu C, Dong Y, Liu J, Gan Y (2012) Cationic core–shell liponanoparticles for ocular gene delivery. Biomaterials 33(30):7621–7630

    Article  CAS  Google Scholar 

  29. Rybak-Smith MJ, Tripisciano C, Borowiak-Palen E, Lamprecht C, Sim RB (2011) Effect of functionalization of carbon nanotubes with psychosine on complement activation and protein adsorption. J Biomed Nanotechnol 7(6):830–839

    Article  CAS  Google Scholar 

  30. Win KY, Feng SS (2005) Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs. Biomaterials 26(15):2713–2722

    Article  CAS  Google Scholar 

  31. Chithrani BD, Chan WC (2007) Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Lett 7(6):1542–1550

    Article  CAS  Google Scholar 

  32. Chithrani BD, Ghazani AA, Chan WC (2006) Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett 6(4):662–668

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nehal Salahuddin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salahuddin, N., Elbarbary, A.A. & Alkabes, H.A. Antibacterial and antitumor activities of 3-amino-phenyl-4(3H)-quinazolinone/polypyrrole chitosan core shell nanoparticles. Polym. Bull. 74, 1775–1790 (2017). https://doi.org/10.1007/s00289-016-1804-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-016-1804-2

Keywords

Navigation