Skip to main content
Log in

Influences of molecular weight on the non-isothermal crystallization and melting behavior of β-nucleated isotactic polypropylene with different melt structures

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Previous studies reported that by tuning the fusion temperature T f (i.e., controlling the melt structure), the β-nucleation efficiency of β-nucleated isotactic polypropylene (β-iPP) can be greatly enhanced, which was called ordered structure effect (OSE). The aim of this study is to investigate the roles of melt structures and molecular weight in non-isothermal crystallization behavior of β-iPP. Five samples with different molecular weights were prepared, and their melt structures were controlled using differential scanning calorimetry (DSC) by tuning T f (T f = 200 or 170 °C represent the case of without or with OSE, respectively). Results revealed that for all the samples, the lower the PP molecular weight, the lower the crystallization peak temperature T c, and the higher the activation energy ΔE, but the occurrence of OSE behavior (i.e., T f = 170 °C) can elevate T c, reduces ΔE and encourages crystallization. The decrease of PP molecular weight decreases β-phase proportion no matter OSE occurs or not; moreover, for PP with high molecular weight, OSE behavior not only enhances the β-phase proportion, but also increases the thermal stability of the β-phase; however, for samples with low molecular weight, OSE behavior enhances the β-phase proportion in a larger extent, and decreases the thermal stability of the β-phase. This study provided important understandings in the effect of OSE, cooling rate and PP molecular weight the β-crystallization of iPP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Scheme 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Karger-Kocsis J (1995) Polypropylene, structure, blends and composites. Springer, Berlin

    Book  Google Scholar 

  2. Horváth Z, Menyhárd A, Doshev P, Gahleitner M, Varga J, Tranninger C et al (2014) Chain regularity of isotactic polypropylene determined by different thermal fractionation methods. J Therm Anal Calorim 118(1):1–11

    Article  Google Scholar 

  3. Wu T, Xiang M, Cao Y, Kang J, Yang F (2014) Pore formation mechanism of β nucleated polypropylene stretched membranes. Rsc Adv 4(69):36689–36701

    Article  CAS  Google Scholar 

  4. Kang J, Li J, Chen S, Peng H, Wang B, Cao Y et al (2013) Investigation of the crystallization behavior of isotactic polypropylene polymerized with different Ziegler–Natta catalysts. J Appl Polym Sci 129(5):2663–2670

    Article  CAS  Google Scholar 

  5. Peng H, Wang B, Gai J, Chen J, Yang F, Cao Y et al (2014) Morphology and mechanical behavior of isotactic polypropylene with different stereo-defect distribution in injection molding. Polym Adv Technol 25(12):1464–1470

    Article  Google Scholar 

  6. Kang J, Yang F, Wu T, Li H, Cao Y, Xiang M (2012) Polymerization control and fast characterization of the stereo-defect distribution of heterogeneous Ziegler–Natta isotactic polypropylene. Eur Polym J 48(2):425–434

    Article  CAS  Google Scholar 

  7. Kang J, Cao Y, Li H, Li J, Chen S, Yang F et al (2012) Influence of the stereo-defect distribution on the crystallization behavior of Ziegler–Natta isotactic polypropylene. J Polym Res 19(12):1–11

    Article  CAS  Google Scholar 

  8. Kang J, Li J, Chen S, Zhu S, Li H, Cao Y et al (2013) Hydrogenated petroleum resin effect on the crystallization of isotactic polypropylene. J Appl Polym Sci 130(1):25–38

    Article  CAS  Google Scholar 

  9. Natta G, Pino P, Corradini P, Danusso F, Mantica E, Mazzanti G et al (1955) Crystalline high polymers of α-olefins. J Am Chem Soc 77(6):1708–1710. doi:10.1021/ja01611a109

    Article  CAS  Google Scholar 

  10. Kang J, Xiong B, Liu D, Cao Y, Chen J, Yang F et al (2014) Understanding in the morphology and tensile behavior of isotactic polypropylene cast films with different stereo-defect distribution. J Polym Res 21(485):1–10

    Google Scholar 

  11. Kang J, Wang B, Peng H, Chen J, Cao Y, Li H et al (2014) Investigation on the structure and crystallization behavior of controlled-rheology polypropylene with different stereo-defect distribution. Polym Bull 71(3):563–579

    Article  Google Scholar 

  12. Kang J, Yang F, Wu T, Li H, Liu D, Cao Y et al (2012) Investigation of the stereodefect distribution and conformational behavior of isotactic polypropylene polymerized with different Ziegler–Natta catalysts. J Appl Polym Sci 125(4):3076–3083

    Article  CAS  Google Scholar 

  13. Dorset DL, McCourt MP, Kopp S, Schumacher M, Okihara T, Lotz B (1998) Isotactic polypropylene, β-phase: a study in frustration. Polymer 39(25):6331–6337

    Article  CAS  Google Scholar 

  14. Lotz B (2000) What can polymer crystal structure tell about polymer crystallization processes? Eur Phys J E 3(2):185–194

    Article  CAS  Google Scholar 

  15. Ferro DR, Meille SV, Brückner S (1998) Energy calculations for isotactic polypropylene: a contribution to clarify the β crystalline structure. Macromolecules 31(20):6926–6934

    Article  CAS  Google Scholar 

  16. Varga J (2002) β-modification of isotactic polypropylene: preparation, structure, processing, properties, and application. J Macromol Sci Part B 41(4):1121–1171

    Article  Google Scholar 

  17. Brückner S, Phillips PJ, Mezghani K, Meille SV (1997) On the crystallization of γ-isotactic polypropylene: a high pressure study. Macromol Rapid Commun 18(1):1–7

    Article  Google Scholar 

  18. Bruckner S, Meille SV, Petraccone V, Pirozzi B (1991) Polymorphism in isotactic polypropylene. Prog Polym Sci 16(2–3):361–404

    Article  CAS  Google Scholar 

  19. Krache R, Benavente R, López-Majada JM, Pereña JM, Cerrada ML, Pérez E (2007) Competition between α, β, and γ polymorphs in a β-nucleated metallocenic isotactic polypropylene. Macromolecules 40(19):6871–6878

    Article  CAS  Google Scholar 

  20. Grein C (2005) Toughness of neat, rubber modified and filled β-nucleated polypropylene: from fundamentals to applications. Adv Polym Sci 188:43–104

    Article  CAS  Google Scholar 

  21. Peng H, Wang B, Gai J, Chen J, Yang F, Cao Y et al (2014) Investigation on the morphology and tensile behavior of β-nucleated isotactic polypropylene with different stereo-defect distribution. J Appl Polym Sci 131(6):40027

    Article  Google Scholar 

  22. Lin Z, Chen C, Guan Z, Li M, Guo G, Xian J et al (2013) The β-nucleated ternary composites of polypropylene/nano-CaCO3/short poly(ethylene-terephthalate) fiber. J Therm Anal Calorim 114(1):229–237

    Article  CAS  Google Scholar 

  23. Varga J, Menyhard A (2007) Effect of solubility and nucleating duality ofN, N′-dicyclohexyl-2,6-naphthalenedicarboxamide on the supermolecular structure of isotactic polypropylene. Macromolecules 40(7):2422–2431

    Article  CAS  Google Scholar 

  24. Kang J, Peng H, Wang B, Chen Z, Li J, Chen J et al (2014) Comparative study on the crystallization behavior of β-isotactic polypropylene nucleated with different β-nucleation agents—effects of thermal conditions. J Appl Polym Sci 131(7):40115

    Article  Google Scholar 

  25. Kang J, Wang B, Peng H, Li J, Chen J, Gai J et al (2014) Investigation on the dynamic crystallization and melting behavior of β-nucleated isotactic polypropylene with different stereo-defect distribution—the role of dual-selective β-nucleation agent. Polym Adv Technol 25(1):97–107

    Article  CAS  Google Scholar 

  26. Kang J, Chen J, Cao Y, Li H (2010) Effects of ultrasound on the conformation and crystallization behavior of isotactic polypropylene and β-isotactic polypropylene. Polymer 51(1):249–256

    Article  CAS  Google Scholar 

  27. Kang J, He J, Chen Z, Yang F, Chen J, Cao Y et al (2015) Effects of β-nucleating agent and crystallization conditions on the crystallization behavior and polymorphic composition of isotactic polypropylene/multi-walled carbon nanotubes composites. Polym Adv Technol 26(1):32–40

    Article  CAS  Google Scholar 

  28. Pawlak A, Piorkowska E (2001) Crystallization of isotactic polypropylene in a temperature gradient. Colloid Polym Sci 279(10):939–946

    Article  CAS  Google Scholar 

  29. Varga J, Karger-Kocsis J (1996) Rules of supermolecular structure formation in sheared isotactic polypropylene melts. J Polym Sci Part B Polym Phys 34:657–670

    Article  CAS  Google Scholar 

  30. Wu C-M, Chen M, Karger-Kocsis J (1999) The role of metastability in the micromorphologic features of sheared isotactic polypropylene melts. Polymer 40:4195–4203

    Article  CAS  Google Scholar 

  31. Strobl G (2006) Crystallization and melting of bulk polymers: new observations, conclusions and a thermodynamic scheme. Prog Polym Sci 31(4):398–442

    Article  CAS  Google Scholar 

  32. Soccio M, Nogales A, Lotti N, Munari A, Ezquerra T (2007) Evidence of early stage precursors of polymer crystals by dielectric spectroscopy. Phys Rev Lett 98(3):037801

    Article  CAS  Google Scholar 

  33. Sanz A, Nogales A, Puente-Orench I, Jiménez-Ruiz M, Ezquerra TA (2011) Detection of early stage precursor during formation of plastic crystal ethanol from the supercooled liquid state: a simultaneous dielectric spectroscopy with neutron diffraction study. Phys Rev Lett 107(2):025502

    Article  Google Scholar 

  34. Cong Y, Hong Z, Zhou W, Chen W, Su F, Li H et al (2012) Conformational ordering on the growth front of isotactic polypropylene spherulite. Macromolecules 45(21):8674–8680

    Article  CAS  Google Scholar 

  35. Gee RH, Lacevic N, Fried LE (2006) Atomistic simulations of spinodal phase separation preceding polymer crystallization. Nat Mater 5(1):39–43

    Article  CAS  Google Scholar 

  36. Fillon B, Lotz B, Thierry A, Wittmann J (1993) Self-nucleation and enhanced nucleation of polymers. Definition of a convenient calorimetric “efficiency scale” and evaluation of nucleating additives in isotactic polypropylene (α phase). J Polym Sci Part B Polym Phys 31(10):1395–1405

    Article  CAS  Google Scholar 

  37. Fillon B, Thierry A, Wittmann J, Lotz B (1993) Self-nucleation and recrystallization of polymers. Isotactic polypropylene, β phase: β–α conversion and β–α growth transitions. J Polym Sci Part B Polym Phys 31(10):1407–1424

    Article  CAS  Google Scholar 

  38. Fillon B, Wittmann J, Lotz B, Thierry A (1993) Self-nucleation and recrystallization of isotactic polypropylene (α phase) investigated by differential scanning calorimetry. J Polym Sci Part B Polym Phys 31(10):1383–1393

    Article  CAS  Google Scholar 

  39. Muller AJ, Arnal ML (2005) Thermal fractionation of polymers. Prog Polym Sci 30(5):559–603

    Article  Google Scholar 

  40. Li X, Su F, Ji Y, Tian N, Lu J, Wang Z et al (2013) Influence of the memory effect of a mesomorphic isotactic polypropylene melt on crystallization behavior. Soft Matter 9(35):8579–8588

    Article  CAS  Google Scholar 

  41. Li H, Yan S (2011) Surface-induced polymer crystallization and the resultant structures and morphologies. Macromolecules 44(3):417–428

    Article  CAS  Google Scholar 

  42. Liu Q, Sun X, Li H, Yan S (2013) Orientation-induced crystallization of isotactic polypropylene. Polymer 54(17):4404–4421

    Article  CAS  Google Scholar 

  43. Fiorenza Azzurri GCA (2008) Insights into formation and relaxation of shear-induced nucleation precursors in isotactic polystyrene. Macromolecules 41:1377–1383

    Article  Google Scholar 

  44. Cavallo D, Azzurri F, Balzano L, Funari SRS, Alfonso GC (2010) Flow memory and stability of shear-induced nucleation precursors in isotactic polypropylene. Macromolecules 43(22):9394–9400

    Article  CAS  Google Scholar 

  45. Cavallo D, Portale G, Balzano L, Azzurri F, Bras W, Peters GW et al (2010) Real-time WAXD detection of mesophase development during quenching of propene/ethylene copolymers. Macromolecules 43(24):10208–10212

    Article  CAS  Google Scholar 

  46. Cavallo D, Azzurri F, Floris R, Alfonso GC, Balzano L, Peters GW (2010) Continuous cooling curves diagrams of propene/ethylene random copolymers. The role of ethylene counits in mesophase development. Macromolecules 43:2890–2896

    Article  CAS  Google Scholar 

  47. Zhang B, Chen J, Cui J, Zhang H, Ji F, Zheng G et al (2012) Effect of shear stress on crystallization of isotactic polypropylene from a structured melt. Macromolecules 45(21):8933–8937

    Article  CAS  Google Scholar 

  48. Zhang B, Chen J, Ji F, Zhang X, Zheng G, Shen C (2012) Effects of melt structure on shear-induced β-cylindrites of isotactic polypropylene. Polymer 53(8):1791–1800

    Article  CAS  Google Scholar 

  49. Kang J, Weng G, Chen Z, Chen J, Cao Y, Yang F et al (2014) New understanding in the influence of melt structure and β-nucleating agents on the polymorphic behavior of isotactic polypropylene. Rsc Adv 56(4):29514–29526

    Article  Google Scholar 

  50. Wang B, Chen Z, Kang J, Yang F, Chen J, Cao Y et al (2015) Influence of melt structure on the crystallization behavior and polymorphic composition of polypropylene random copolymer. Thermochim Acta 604:67–76

    Article  CAS  Google Scholar 

  51. Kang J, Zhang JY, Chen ZF, Yang F, Chen JY, Cao Y, Xiang M (2014) Isothermal crystallization behavior of β-nucleated isotactic polypropylene with different melt structures. J Polym Res 21(506):1–9

    Google Scholar 

  52. Kang J, Chen Z, Zhou T, Yang F, Chen J, Cao Y et al (2014) Dynamic crystallization and melting behavior of β-nucleated isotactic polypropylene with different melt structures. J Polym Res 21(4):1–12

    Article  Google Scholar 

  53. Kang J, He J, Chen Z, Yu H, Chen J, Yang F, Cao Y, Xiang M (2015) Investigation on the crystallization behavior and polymorphic composition of isotactic polypropylene/multi-walled carbon nanotubes composites nucleated with β-nucleating agent—the role of melt structures. J Therm Anal Calorim 119(3):1769–1780

    Article  CAS  Google Scholar 

  54. Zhang Q, Chen Z, Wang B, Chen J, Yang F, Kang J et al (2015) Effects of melt structure on crystallization behavior of isotactic polypropylene nucleated with α/β compounded nucleating agents. J Appl Polym Sci 132(4):41355

    Article  Google Scholar 

  55. Kang J, Chen Z, Chen J, Yang F, Weng G, Cao Y et al (2015) Crystallization and melting behaviors of the ß-nucleated isotactic polypropylene with different melt structures—the role of molecular weight. Thermochim Acta 599:42–51

    Article  CAS  Google Scholar 

  56. Lin X, Zhang H, Ke M, Xiao L, Zuo D, Qian Q, Chen Q (2014) Non-isothermal crystallization kinetics of poly(ethylene terephthalate)/mica composites. Polym Bull 71(9):2287–2301

    Article  CAS  Google Scholar 

  57. Ravari F, Mashak A, Nekoomanesh M, Mobedi H (2013) Non-isothermal cold crystallization behavior and kinetics of poly(l-lactide): effect of l-lactide dimer. Polym Bull 70(9):2569–2586

    Article  CAS  Google Scholar 

  58. Zhang J, Kang J, Chen J, Cao Y, Xiang M (2014) Crystallization behavior, tensile behavior and hydrophilicity of poly(vinylidene fluoride)/poly(vinyl pyrrolidone) blends. Polym Sci Ser A 56(6):864–873

    Article  CAS  Google Scholar 

  59. Chen Z, Wang B, Kang J, Peng H, Chen J, Yang F et al (2014) Crystallization behavior and morphology of β-nucleated isotactic polypropylene with different stereo-defect distribution. Polym Adv Technol 25(4):353–363

    Article  CAS  Google Scholar 

  60. Luo F, Wang K, Ning N, Geng C, Deng H, Chen F et al (2011) Dependence of mechanical properties on β-form content and crystalline morphology for β-nucleated isotactic polypropylene. Polym Adv Technol 22(12):2044–2054

    Article  CAS  Google Scholar 

  61. Kang J, Wang B, Peng H, Chen J, Cao Y, Li H et al. (2013) Investigation on the structure and crystallization behavior of controlled-rheology polypropylene with different stereo-defect distribution. Polym Bull 1–17

  62. Wang C, Zhang Z, Ding Q, Jiang J, Li G, Mai K (2013) β-Crystallization of isotactic polypropylene in the presence of β-nucleating agent and different crystallinity poly(ethylene terephthalate). Thermochim Acta 559:17–22

    Article  CAS  Google Scholar 

  63. Turner-Jones A, Aizlewood J, Beckett D (1964) Crystalline forms of isotactic polypropylene. Makromol Chem 75:134

    Article  CAS  Google Scholar 

  64. Li JX, Cheung WL, Jia D (1999) A study on the heat of fusion of β-polypropylene. Polymer 40(5):1219–1222

    Article  CAS  Google Scholar 

  65. Qiu S, Zheng Y, Zeng A, Guo Y, Li B (2011) Non-isothermal crystallization of monomer casting polyamide 6/functionalized MWNTs nanocomposites. Polym Bull 67(9):1945–1959

    Article  CAS  Google Scholar 

  66. Mohsen-Nia M, Memarzadeh MR (2013) Characterization and non-isothermal crystallization behavior of biodegradable poly(ethylene sebacate)/SiO2 nanocomposites. Polym Bull 70(8):2471–2491

    Article  CAS  Google Scholar 

  67. Horvath Z, Stoll K (2010) J Varga. The effect of molecular mass on the polymorphism and crystalline structure of isotactic polypropylene. Express Polym Lett 4(2):101–114

    Article  CAS  Google Scholar 

  68. Cai Z, Li J, Shang Y, Huo H, Feng J, Funari S, Jiang S (2013) Temperature-dependent selective crystallization behavior of isotactic polypropylene with a β-nucleating agent. J Appl Polym Sci 128:628–635

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We express our sincerely thanks to the National Science Foundation of China (NSFC 51203106, 51503134) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinyao Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, J., Yang, F., Chen, J. et al. Influences of molecular weight on the non-isothermal crystallization and melting behavior of β-nucleated isotactic polypropylene with different melt structures. Polym. Bull. 74, 1461–1482 (2017). https://doi.org/10.1007/s00289-016-1784-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-016-1784-2

Keywords

Navigation