Skip to main content
Log in

A comparison between polyethylene glycol (PEG) and polypropylene glycol (PPG) treatment on the properties of nano-titanium dioxide (TiO2) based natural rubber (NR) nanocomposites

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The purpose of the present article is to modify the surface of nano-titanium dioxide (TiO2) and to investigate the reinforcing effect of both unmodified and surface-modified nano-titanium dioxide (TiO2) on the mechanical properties and thermal stability of natural rubber (NR) nanocomposites. Surface of nano-TiO2 is modified by polyethylene glycol (PEG) and polypropylene glycol (PPG). The effective surface modification of nano-TiO2 is evaluated by Fourier transform infrared (FTIR) spectra and field emission scanning electron microscopy (FESEM). The result notifies that the final properties of NR nanocomposites are dramatically improved in the presence of surface-modified nano-TiO2 in comparison to unmodified nano-TiO2. The excellent reinforcing capability of surface-modified nano-TiO2 is due to its better hydrophobicity and uniform dispersion within the NR matrix, as confirmed from morphological analysis. Furthermore, due to its small size PEG is better surface modifier for nano-TiO2 than PPG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Nair KG, Dufresne A (2003) Crab shell chitin whisker reinforced natural rubber nanocomposites. 1. processing and swelling behavior. Biomacromolecules 4:657–665

    Article  CAS  Google Scholar 

  2. Rattanasom N, Saowapark T, Deeprasertkul C (2007) Reinforcement of natural rubber with silica/carbon black hybrid filler. Polym Test 26:369–377

    Article  CAS  Google Scholar 

  3. Sui G, Zhong WH, Yang XP, Yu YH, Zhao SH (2008) Preparation and properties of natural rubber composites reinforced with pretreated carbon nanotubes. Polym Adv Technol 19:1543–1549

    CAS  Google Scholar 

  4. Ismail H, Ramly F, Othman N (2010) Multiwall carbon nanotube-filled natural rubber: the effects of filler loading and mixing method. Polym Plast Technol Eng 49:260–266

    Article  CAS  Google Scholar 

  5. Kueseng P, Sae-oui P, Rattanasom N (2013) Mechanical and electrical properties of natural rubber and nitrile rubber blends filled with multi-wall carbon nanotube: effect of preparation methods. Polym Test 32:731–738

    Article  CAS  Google Scholar 

  6. Ismail H, Salleh SZ, Ahmad Z (2011) Curing characteristics, mechanical, thermal, and morphological properties of halloysite nanotubes (HNTs)-filled natural rubber nanocomposites. Polym Plast Technol Eng 50:681–688

    Article  CAS  Google Scholar 

  7. Sookyung U, Nakason C, Thaijaroen W, Vennemann N (2014) Influence of modifying agents of organoclay on properties of nanocomposites based on natural rubber. Polym Test 33:48–56

    Article  CAS  Google Scholar 

  8. Viet CX, Ismail H, Rashid AA, Takeichi T, Thao VH (2008) Organoclay filled natural rubber nanocomposites: the effects of filler loading. Polym Plast Technol Eng 47:1090–1096

    Article  CAS  Google Scholar 

  9. Poompradub S, Luthikaviboon T, Linpoo S, Rojanathanes R, Prasassarakich P (2011) Improving oxidation stability and mechanical properties of natural rubber vulcanizates filled with calcium carbonate modified by gallic acid. Polym Bull 66:965–977

    Article  CAS  Google Scholar 

  10. Balachandran M, Bhagawan SS (2012) Mechanical, thermal, and transport properties of nitrile rubber-nanocalcium carbonate composites. J Appl Polym Sci 126:1983–1992

    Article  CAS  Google Scholar 

  11. Mishra S, Shimpi NG (2008) Studies on mechanical, thermal, and flame retarding properties of polybutadiene rubber (PBR) nanocomposites. Polym Plast Technol Eng 47:72–81

    Article  CAS  Google Scholar 

  12. Roy K, Alam MN, Mandal SK, Debnath SC (2015) Effect of sol–gel modified nano calcium carbonate (CaCO3) on the cure, mechanical and thermal properties of acrylonitrile butadiene rubber (NBR) nanocomposites. J Sol-Gel Sci Technol 73:306–313

    Article  CAS  Google Scholar 

  13. Shimpi NG, Mali AD, Sonawane HA, Mishra S (2014) Effect of nBaCO3 on mechanical, thermal and morphological properties of isotactic PP-EPDM blend. Polym Bull 71:2067–2080

    Article  CAS  Google Scholar 

  14. Mishra S, Shimpi NG, Mali AD (2012) Investigation of photo-oxidative effect on morphology and degradation of mechanical and physical properties of nano CaCO3 silicone rubber composites. Polym Adv Technol 23:236–246

    Article  CAS  Google Scholar 

  15. Taghvaei-Ganjali S, Malekzadeh M, Farahani M, Abbasian A, Khosravi M (2011) Effect of surface-modified zinc oxide as cure activator on the properties of a rubber compound based on NR/SBR. J Appl Polym Sci 122:249–256

    Article  CAS  Google Scholar 

  16. Ma XK, Lee NH, Oh HJ, Kim JW, Rhee CK, Park KS, Kim SJ (2010) Surface modification and characterization of highly dispersed silica nanoparticles by a cationic surfactant. Colloids Surf A Physicochem Eng Asp 358:172–176

    Article  CAS  Google Scholar 

  17. Qu Y, Wang W, Jing L, Song S, Shi X, Xue L, Fu H (2010) Surface modification of nanocrystalline anatase with CTAB in the acidic condition and its effects on photocatalytic activity and preferential growth of TiO2. Appl Surf Sci 257:151–156

    Article  CAS  Google Scholar 

  18. Sudha M, Senthilkumar S, Hariharan R, Suganthi A, Rajarajan M (2013) Synthesis, characterization and study of photocatalytic activity of surface modified ZnO nanoparticles by PEG capping. J Sol-Gel Sci Technol 65:301–310

    Article  CAS  Google Scholar 

  19. Mosurkal R, Samuelson LA, Smith KD, Westmoreland PR, Parmar VS, Yan F, Kumar J, Watterson AC (2008) Nanocomposites of TiO2 and siloxane copolymers as environmentally safe flame retardant materials. J Macromol Sci A Pure Appl Chem 45:942–946

    Article  Google Scholar 

  20. Kubacka A, Serrano C, Ferrer M, Lünsdorf H, Bielecki P, Cerrada ML, Fernández-García M, Fernández-García M (2007) High performance dual-action polymer–TiO2 nanocomposite films via melting processing. Nano Lett 7:2529–2534

    Article  CAS  Google Scholar 

  21. Saritha A, Joseph K, Boudenne A, Thomas S (2011) Mechanical, thermophysical, and diffusion properties of TiO2-filled chlorobutyl rubber composites. Polym Compos 32:1681–1687

    Article  CAS  Google Scholar 

  22. Behnajady MA, Eskandarloo H, Modirshahla N, Shokri M (2011) Sol-Gel Low-temperature synthesis of stable anatase-type TiO2 nanoparticles under different conditions and its photocatalytic activity. Photochem Photobiol 87:1002–1008

    Article  CAS  Google Scholar 

  23. Sabzi M, Mirabedini SM, Zohuriaan-Mehr J, Atai M (2009) Surface modification of TiO2 nano-particles with silane coupling agent and investigation of its effect on the properties of polyurethane composite coating. Progr Org Coat 65:222–228

    Article  CAS  Google Scholar 

  24. Ramesan MT, Mathew G, Kuriakose B, Alex R (2001) Role of dichlorocarbene modified styrene butadiene rubber in compatibilisation of styrene butadiene rubber and chloroprene rubber blends. Eur Polym J 37:719–728

    Article  CAS  Google Scholar 

  25. Sui G, Zhong WH, Yang XP, Yu YH (2008) Curing kinetics and mechanical behavior of natural rubber reinforced with pretreated carbon nanotubes. Mater Sci Eng, A 485:524–531

    Article  Google Scholar 

  26. Sae-oui P, Sirisinha C, Thepsuwan U, Hatthapanit K (2007) Dependence of mechanical and aging properties of chloroprene rubber on silica and ethylene thiourea loadings. Eur Polym J 43:185–193

    Article  CAS  Google Scholar 

  27. Usuki A, Kawasumi M, Kojima Y, Okada A, Kurauchi T, Kamigaito O (1993) Synthesis of nylon 6-clay hybrid. J Mater Res 8:1179–1184

    Article  CAS  Google Scholar 

  28. Flory PJ, Renher JJ (1943) Statistical mechanics of cross-linked polymer networks II. Swelling. J Chem Phys 11:521–526

    Article  CAS  Google Scholar 

  29. Mandal SK, Alam MN, Roy K, Debnath SC (2014) Reclaiming of ground rubber tire by safe multifunctional rubber additives: II virgin natural rubber/reclaimed ground rubber tire vulcanizates. Rubber Chem Technol 87:152–167

    Article  CAS  Google Scholar 

  30. Roy K, Alam MN, Mandal SK, Debnath SC (2015) Development of a suitable nanostructured cure activator system for polychloroprene rubber nanocomposites with enhanced curing, mechanical and thermal properties. Polym Bull. doi:10.1007/s00289-015-1480-7

    Google Scholar 

  31. Mishra S, Shimpi NG, Patil UD (2007) Effect of nano CaCO3 on thermal properties of styrene butadiene rubber (SBR). J Polym Res 14:449–459

    Article  CAS  Google Scholar 

  32. Mishra S, Shimpi NG, Mali AD (2011) Influence of stearic acid treated nano-CaCO3 on the properties of silicone nanocomposites. J Polym Res 18:1715–1724

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors thankfully acknowledge Department of Science and Technology, West Bengal, India (Sanction No. 715(Sanc.)/ST/P/S&T/6G-1/2013 dated 12.11.2014) for financial support. Mr. Kumarjyoti Roy sincerely thanks University of Kalyani for fellowship assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhas Chandra Debnath.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roy, K., Mandal, S.K., Alam, M.N. et al. A comparison between polyethylene glycol (PEG) and polypropylene glycol (PPG) treatment on the properties of nano-titanium dioxide (TiO2) based natural rubber (NR) nanocomposites. Polym. Bull. 73, 3065–3079 (2016). https://doi.org/10.1007/s00289-016-1641-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-016-1641-3

Keywords

Navigation