Skip to main content
Log in

Application of SiO2 nanoparticles with double layer coverage consist of citric acid and l(+)-ascorbic acid for the production of poly(vinyl chloride)/SiO2 nanocomposite films with enhanced optical and thermal properties

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Incorporation of SiO2 nanoparticles (NPs) into poly(vinyl chloride) (PVC) matrix to prepare PVC/SiO2 nanocomposites (NCs) can enhance its properties. To achieve improved properties for the NCs, NPs should be dispersed properly and be compatible within the polymer matrix. Therefore, to prevent SiO2 NPs from aggregation, surface modification of NPs was performed by citric acid (CA) and l(+)-ascorbic acid (AA) as biological and environmental friendly coating layers for the first time. This process was carried out under ultrasonic irradiation condition, which is an economical and eco-friendly tool. After that three different amounts of modified SiO2 (SiO2–CA–AA) were inserted into PVC matrix and PVC/SiO2–CA–AA NCs were prepared using solution casting method. The structures and morphology of the prepared NC films were verified by several techniques including Fourier transfer infrared, X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, thermogravimetric analysis, ultraviolet–visible (UV–Vis) spectroscopy and tensile testing. Thermogravimetric analysis confirmed the presence of about 13 wt% modifiers on the surface of SiO2. Microscopic observations showed good dispersity of SiO2–CA–AA NPs in the polymer matrix. Resulting NC films showed more flexibility than pure PVC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Mallakpour S, Mani L (2015) Novel polyvinylpyrrolidone nanocomposites with dispersed poly(amide-imide)/nano-ZrO2 as new nano-filler: morphology, thermal and optical properties. Polym Bull 72:2421–2433

    Article  CAS  Google Scholar 

  2. Mallakpour S, Madani M (2014) Facile approach to prepare poly (amide–imide)/ZnO nanocomposites derived from l-leucine-based diacid and 4,4′-Sulfonyldianiline: using ultrasound irradiation and ionic liquid. Polym Plast Technol Eng 53:423–428

    Article  CAS  Google Scholar 

  3. Kango S, Kalia S, Celli A, Njuguna J et al (2013) Surface modification of inorganic nanoparticles for development of organic–inorganic nanocomposites—a review. Prog Polym Sci 38:1232–1261

    Article  CAS  Google Scholar 

  4. Díez-Pascual A, Gómez-Fatou M, Ania F et al (2015) Nanoindentation in polymer nanocomposites. Prog Mater Sci 67:1–94

    Article  Google Scholar 

  5. Qi D, Liu C, Chen Z et al (2015) In situ emulsion copolymerization of methyl methacrylate and butyl acrylate in the presence of SiO2 with various surface coupling densities. Colloid Polym Sci 293:463–471

    Article  CAS  Google Scholar 

  6. Sun S, Li C, Zhang L et al (2006) Effects of surface modification of fumed silica on interfacial structures and mechanical properties of poly(vinyl chloride) composites. Eur Polym J 42:1643–1652

    Article  CAS  Google Scholar 

  7. Zhu A, Cai A, Zhou W, Shi Z (2008) Effect of flexibility of grafted polymer on the morphology and property of nanosilica/PVC composites. Appl Surf Sci 254:3745–3752

    Article  CAS  Google Scholar 

  8. Liu C, Luo YF, Jia ZX, Zhong BC, Li SQ, Guo BC, Jia DM (2011) Enhancement of mechanical properties of poly(vinyl chloride) with polymethyl methacrylate-grafted halloysite nanotube. Express Polym Lett 5:591–603

    Article  CAS  Google Scholar 

  9. Mallakpour S, Nikkhoo E (2014) Surface modification of nano-TiO2 with trimellitylimido-amino acid-based diacids for preventing aggregation of nanoparticles. Adv Powder Technol 25:348–353

    Article  CAS  Google Scholar 

  10. Mallakpour S, Javadpour M (2015) Design and characterization of novel poly(vinyl chloride) nanocomposite films with zinc oxide immobilized with biocompatible citric acid. Colloid Polym Sci 293:2565–2573

    Article  CAS  Google Scholar 

  11. Guojian W, Lijuan W, Mei Z, Zhengmian C (2009) Reinforcement and toughening of poly(vinyl chloride) with poly(caprolactone) grafted carbon nanotubes. Composites 40:1476–1481

    Article  Google Scholar 

  12. Mallakpour S, Nezamzadeh Ezhieh A (2015) A simple and environmentally friendly method for surface modification of ZrO2 nanoparticles by biosafe citric acid as well as ascorbic acid (vitamin c) and its application for the preparation of poly(vinyl chloride) nanocomposite films. Polym comp. doi:10.1002/pc.23746

    Google Scholar 

  13. Zhang S, Yu A, Liu S et al (2012) Effect of silica nanoparticles on structure and properties of waterborne UV-curable polyurethane nanocomposites. Polym Bull 68:1469–1482

    Article  CAS  Google Scholar 

  14. Mallakpour S, Marefatpour F (2015) An effective and environmentally friendly method for surface modification of amorphous silica nanoparticles by biodegradable diacids derived from different amino acids. Synth React Inorg Met-Org Chem 45:376–380

    Article  CAS  Google Scholar 

  15. Zhu A, Shi Z, Cai A et al (2008) Synthesis of core–shell PMMA–SiO2 nanoparticles with suspension–dispersion–polymerization in an aqueous system and its effect on mechanical properties of PVC composites. Polym Test 27:540–547

    Article  CAS  Google Scholar 

  16. Ahn S, Park J, Kim J et al (2011) Nanocomposite membranes consisting of poly(vinyl chloride) graft copolymer and surface-modified silica nanoparticles. Macromol Res 19:1195–1201

    Article  CAS  Google Scholar 

  17. Xia H, Wang Q (2002) Ultrasonic irradiation: a novel approach to prepare conductive polyaniline/nanocrystalline titanium oxide composites. Chem Mater 14:2158–2165

    Article  CAS  Google Scholar 

  18. Dong Q, Ding Y, Wen B et al (2012) Improvement of thermal stability of polypropylene using DOPO-immobilized silica nanoparticles. Colloid Polym Sci 290:1371–1380

    Article  CAS  Google Scholar 

  19. Goodarzi A, Sahoo Y, Swihart M et al (2003) Aqueous ferrofluid of citric acid coated magnetite particles. In: MRS Proceedings. Mat. Res. Soc. Symp Proc. doi:10.1557/PROC-789-N6.6

  20. Dinari M, Mallakpour S (2014) Ultrasound-assisted one-pot preparation of organo-modified nano-sized layered double hydroxide and its nanocomposites with polyvinylpyrrolidone. J Polym Res 21:1–8

    Article  CAS  Google Scholar 

  21. Leyva-Ramos R, Landin-Rodriguez L, Leyva-Ramos S et al (2012) Modification of corncob with citric acid to enhance its capacity for adsorbing cadmium (II) from water solution. Chem Eng J 180:113–120

    Article  CAS  Google Scholar 

  22. Bichara LC, Lanús HE, Ferrer EG et al (2011) Vibrational study and force field of the citric acid dimer based on the SQM methodology. Adv Phys Chem. doi:10.1155/2011/347072

    Google Scholar 

  23. Singh P, Singh N, Yadav R (2010) Study of the optimized molecular structures and vibrational characteristics of neutral l-ascorbic acid and its anion and cation using density functional theory. J Chem Pharm Res 2:656–681

    CAS  Google Scholar 

  24. Jafarpour M, Rezaeifard A, Ghahramaninezhad M, Feizpour F (2015) Dioxomolybdenum (vi) complex immobilized on ascorbic acid coated TiO2 nanoparticles catalyzed heterogeneous oxidation of olefins and sulfides. Green Chem 17:442–452

    Article  CAS  Google Scholar 

  25. Guo L, Shi G, Liang Y (1999) Polyene films prepared by poly(ethylene glycol) s-catalyzed dehydrochlorination of poly(vinyl chloride): chemical and electrochemical properties. Synth Met 104:129–135

    Article  CAS  Google Scholar 

  26. Reda SY (2011) Evaluation of antioxidants stability by thermal analysis and its protective effect in heated edible vegetable oil. Food Sci Technol (Campinas) 31:475–480

    Google Scholar 

  27. Jingyan S, Yuwen L, Zhiyong W et al (2013) Investigation of thermal decomposition of ascorbic acid by TG-FTIR and thermal kinetics analysis. J Pharm Biomed Anal 77:116–119

    Article  Google Scholar 

  28. Bai X, Wang Q, Sui S, Zhang C (2011) The effects of wood-flour on combustion and thermal degradation behaviors of PVC in wood-flour/poly (vinyl chloride) composites. J Anal Appl Pyrolysis 91:34–39

    Article  CAS  Google Scholar 

  29. Van Krevelen DW, Hoftyzer PJ (1976) Properties of polymers, 3rd edn. Elsevier, Amsterdam

    Google Scholar 

  30. Mallakpour S, Behranvand V (2014) Surface treatment of nano ZnO using 3, 4, 5, 6-tetrabromo-N-(4-hydroxy-phenyl)-phthalamic acid as novel coupling agent for the preparation of poly (amide–imide)/ZnO nanocomposites. Colloid Polym Sci 292:2275–2283

    Article  CAS  Google Scholar 

  31. El Sayed A, El-Sayed S, Morsi W et al (2014) Synthesis, characterization, optical, and dielectric properties of polyvinyl chloride/cadmium oxide nanocomposite films. Polym Compos 35:1842–1851

    Article  Google Scholar 

  32. Rahman I, Vejayakumaran P, Sipaut C et al (2009) Size-dependent physicochemical and optical properties of silica nanoparticles. Mater Chem Phys 114:328–332

    Article  CAS  Google Scholar 

  33. Wang X, Wang L, Su Q et al (2013) Use of unmodified SiO2 as nanofiller to improve mechanical properties of polymer-based nanocomposites. Compos Sci Technol 89:52–60

    Article  CAS  Google Scholar 

  34. Lin J, Liu Y, Yang W et al (2014) Structure and mechanical properties of the hybrid films of well dispersed SiO2 nanoparticle in polyimide (PI/SiO2) prepared by sol–gel process. J Polym Res 21:1–8

    Google Scholar 

Download references

Acknowledgments

The researchers would like to express their thanks to the Research Affairs Division Isfahan University of Technology (IUT), Isfahan. Also, we wish to express our gratitude to the Iran Nanotechnology Initiative Council (INIC), National Elite Foundation (NEF) and Center of Excellence in Sensors and Green Chemistry (IUT) for their partial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shadpour Mallakpour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mallakpour, S., Naghdi, M. Application of SiO2 nanoparticles with double layer coverage consist of citric acid and l(+)-ascorbic acid for the production of poly(vinyl chloride)/SiO2 nanocomposite films with enhanced optical and thermal properties. Polym. Bull. 73, 1701–1717 (2016). https://doi.org/10.1007/s00289-015-1572-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-015-1572-4

Keywords

Navigation