Skip to main content
Log in

Non-isothermal crystallization behavior and melting behavior of Ziegler–Natta isotactic polypropylene with different stereo-defect distribution nucleated with bi-component β-nucleation agent

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The influence of bi-component β-nucleating agent of pimelic acid/calcium stearate (Pa–Cast) on the non-isothermal crystallization behavior and polymorphic composition of two isotactic polypropylene (iPP) samples with nearly same average isotacticity but different uniformities of stereo-defect distribution were investigated by differential scanning calorimetry (DSC), wide-angle X-ray diffraction (WAXD) and Scanning electronic microscopy (SEM). The results indicated that Pa–Cast has very high β-nucleation efficiency, and greatly increases the crystallization rate of both samples. After the addition of Pa–Cast, the sample with more uniform distribution of stereo-defect and less fraction of high isotacticity (denoted as PCPP-B) is more favorable for formation of large amount of β-phase; meanwhile, its increase of crystallization peak temperature T c is obviously more prominent. Further analysis of melting behavior showed that the β-phase content greatly depends on the cooling rate applied, the stereo-defect distribution of iPP and the end temperature of cooling (T end). When T end = 50 °C, for iPP with less uniform stereo-defect distribution (PCPP-A), the slow cooling rate favors the formation of high β-content, while for PCPP-B, the fast cooling rate favors the formation of high β-content, which should be attributed to the combination effect of the ability for β-crystallization and the thermal stability of the β-phase. After elimination of the confusion of β–α recrystallization during heating (T end = 100 °C), it turns out that for both PCPP-A and PCPP-B, higher cooling rate is more favorable for β-crystallization. PCPP-A is more favorable for the formation of β-phase with higher thermal stability compared with PCPP-B.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Haque MM, Islam MS, Islam MN (2012) Preparation and characterization of polypropylene composites reinforced with chemically treated coir. J Polym Res 19(5):1–8

    CAS  Google Scholar 

  2. Zhu L, Xu X, Sheng J (2011) The effect of stretching on the morphological structures and mechanical properties of polypropylene and poly(ethylene-co-octene) blends. J Polym Res 18(6):2469–2475

    CAS  Google Scholar 

  3. Krache R, Benavente R, López-Majada JM, Pereña JM, Cerrada ML, Pérez E (2007) Competition between α, β, and γ polymorphs in a β-nucleated metallocenic isotactic polypropylene. Macromolecules 40(19):6871–6878

    CAS  Google Scholar 

  4. Lorenzo AT, Arnal ML, Müller AJ, Lin MC, Chen HL (2011) SAXS/DSC analysis of the lamellar thickness distribution on a SSA thermally fractionated model polyethylene. Macromol Chem Phys 212(18):2009–2016

    CAS  Google Scholar 

  5. Li J, Bao RY, Yang W, Xie BH, Yang MB (2012) Effect of annealing temperature on the mechanical properties, thermal behavior and morphology of β-iPP/PA6 blends. Mater Des 40:392–399

    CAS  Google Scholar 

  6. Kang J, Chen J, Cao Y, Li H (2010) Effects of ultrasound on the conformation and crystallization behavior of isotactic polypropylene and β-isotactic polypropylene. Polymer 51(1):249–256

    CAS  Google Scholar 

  7. Xu JZ, Liang YY, Huang HD, Zhong GJ, Lei J, Chen C et al (2012) Isothermal and nonisothermal crystallization of isotactic polypropylene/graphene oxide nanosheet nanocomposites. J Polym Res 19(10):1–7

    Google Scholar 

  8. Kang J, Li J, Chen S, Zhu S, Li H, Cao Y et al (2013) Hydrogenated petroleum resin effect on the crystallization of isotactic polypropylene. J Appl Polym Sci 130(1):25–38

    CAS  Google Scholar 

  9. Kang J, Yang F, Wu T, Li H, Cao Y, Xiang M (2012) Polymerization control and fast characterization of the stereo-defect distribution of heterogeneous Ziegler–Natta isotactic polypropylene. Eur Polym J 48(2):425–434

    CAS  Google Scholar 

  10. Kang J, Cao Y, Li H, Li J, Chen S, Yang F et al (2012) Influence of the stereo-defect distribution on the crystallization behavior of Ziegler–Natta isotactic polypropylene. J Polym Res 19(12):1–11

    CAS  Google Scholar 

  11. Kang J, Gai J, Li J, Chen S, Peng H, Wang B et al (2013) Dynamic crystallization and melting behavior of β-nucleated isotactic polypropylene polymerized with different Ziegler–Natta catalysts. J Polym Res 20(2):1–11

    CAS  Google Scholar 

  12. Yamamoto Y, Inoue Y, Onai T, Doshu C, Takahashi H, Uehara H (2007) Deconvolution analyses of differential scanning calorimetry profiles of β-crystallized polypropylenes with synchronized X-ray measurements. Macromolecules 40(8):2745–2750

    CAS  Google Scholar 

  13. Hosier IL, Alamo RG, Esteso P, Isasi JR, Mandelkern L (2003) Formation of the α and γ polymorphs in random metallocene–propylene copolymers. effect of concentration and type of comonomer. Macromolecules 36(15):5623–5636

    CAS  Google Scholar 

  14. Mileva D, Androsch R, Zhuravlev E, Schick C, Wunderlich B (2012) Homogeneous nucleation and mesophase formation in glassy isotactic polypropylene. Polymer 53(2):277–282

    CAS  Google Scholar 

  15. Androsch R, Di Lorenzo ML, Schick C, Wunderlich B (2010) Mesophases in polyethylene, polypropylene, and poly(1-butene). Polymer 51(21):4639–4662

    CAS  Google Scholar 

  16. Tjong SC, Shen JS, Li RKY (1996) Mechanical behavior of injection molded β-crystalline phase polypropylene. Polym Eng Sci 36(1):100–105

    CAS  Google Scholar 

  17. Varga J, Karger-Kocsis J (1995) Interfacial morphologies in carbon fibre-reinforced polypropylene microcomposites. Polymer 36(25):4877–4881

    CAS  Google Scholar 

  18. Pawlak A, Piorkowska E (2001) Crystallization of isotactic polypropylene in a temperature gradient. Colloid Polym Sci 279(10):939–946

    CAS  Google Scholar 

  19. Ma CG, Chen L, Xiong XM, Zhang JX, Rong MZ, Zhang MQ (2004) Influence of oscillatory shear on crystallization of isotactic polypropylene studied by dynamic mechanical analysis. Macromolecules 37(24):8829–8831

    CAS  Google Scholar 

  20. Zhang B, Chen J, Ji F, Zhang X, Zheng G, Shen C (2012) Effects of melt structure on shear-induced β-cylindrites of isotactic polypropylene. Polymer 53(8):1791–1800

    CAS  Google Scholar 

  21. Li X, Wu H, Chen J, Yang J, Huang T, Zhang N et al (2012) Nonisothermal crystallization and multiple melting behaviors of β-nucleated impact-resistant polypropylene copolymer. J Appl Polym Sci 126(3):1031–1043

    CAS  Google Scholar 

  22. Yamaguchi M, Fukui T, Okamoto K, Sasaki S, Uchiyama Y, Ueoka C (2009) Anomalous molecular orientation of isotactic polypropylene sheet containing N,N′-dicyclohexyl-2,6-naphthalenedicarboxamide. Polymer 50(6):1497–1504

    CAS  Google Scholar 

  23. Chen Z, Wang B, Kang J, Peng H, Chen J, Yang F et al (2014) Crystallization behavior and morphology of β-nucleated isotactic polypropylene with different stereo-defect distribution. Polym Adv Technol 25(4):353–363

    CAS  Google Scholar 

  24. Kang J, Peng H, Wang B, Chen Z, Li J, Chen J et al (2014) Comparative study on the crystallization behavior of β-isotactic polypropylene nucleated with different β-nucleation agents—effects of thermal conditions. J Appl Polym Sci 131(7):40115

    Google Scholar 

  25. Mathieu C, Thierry A, Wittmann JC, Lotz B (2002) Specificity and versatility of nucleating agents toward isotactic polypropylene crystal phases. J Polym Sci Part B Polym Phys 40(22):2504–2515

    CAS  Google Scholar 

  26. Fujiyama M (1995) Structures and properties of injection moldings of β-crystal nucleator-added polypropylenes. Int Polym Proc 10(2):172–178

    CAS  Google Scholar 

  27. Varga J, Menyhárd A (2007) Effect of solubility and nucleating duality of N,N′-dicyclohexyl-2,6-naphthalenedicarboxamide on the supermolecular structure of isotactic polypropylene. Macromolecules 40(7):2422–2431

    CAS  Google Scholar 

  28. Liao K, Chen X, Zheng C (1995) Surface modification of calcium carbonate used for polypropylene blending with dimeric aluminates. J Appl Polym Sci 57(10):1245–1250

    CAS  Google Scholar 

  29. Jiang J, Li G, Tan N, Ding Q, Mai K (2012) Crystallization and melting behavior of isotactic polypropylene composites filled by zeolite supported β-nucleator. Thermochim Acta 546:127–133

    CAS  Google Scholar 

  30. Dou Q, Meng MR, Li L (2010) Effect of pimelic acid treatment on the crystallization, morphology, and mechanical properties of isotactic polypropylene/mica composites. Polym Compos 31(9):1572–1584

    CAS  Google Scholar 

  31. Meng MR, Dou Q (2008) Effect of pimelic acid on the crystallization, morphology and mechanical properties of polypropylene/wollastonite composites. Mater Sci Eng A 492(1–2):177–184

    Google Scholar 

  32. Dou Q (2008) Effect of the composition ratio of pimelic acid/calcium stearate bicomponent nucleator and crystallization temperature on the production of β crystal form in isotactic polypropylene. J Appl Polym Sci 107(2):958–965

    CAS  Google Scholar 

  33. Trongtorsak K, Supaphol P, Tantayanon S (2004) Effect of calcium stearate and pimelic acid addition on mechanical properties of heterophasic isotactic polypropylene/ethylene–propylene rubber blend. Polym Test 23(5):533–539

    CAS  Google Scholar 

  34. Li JX, Cheung WL (1997) Pimelic acid-based nucleating agents for hexagonal crystalline polypropylene. J Vinyl Addit Tech 3(2):151–156

    CAS  Google Scholar 

  35. Shi G, Zhang X (1992) Effect of β-nucleator content on the crystallization and melting behaviour of β-crystalline phase polypropylene. Thermochim Acta 205:235–243

    CAS  Google Scholar 

  36. Gy Shi, Zhang Xd, Zx Qiu (1992) Crystallization kinetics of β-phase poly(propylene). Die Makromol Chem 193(3):583–591

    Google Scholar 

  37. Gy Shi, Zhang Xd, Cao Yh, Hong J (1993) Melting behavior and crystalline order of β-crystalline phase poly(propylene). Die Makromol Chem 194(1):269–277

    Google Scholar 

  38. De Rosa C, Auriemma F, de Ballesteros OR, Di Girolamo R, Tarallo O, Galotto NG (2013) Tailoring mechanical properties of isotactic polypropylene via crystallization of the mesophase and control of stereodefects concentration. Macromol Chem Phys 214(17):1951–1964

    Google Scholar 

  39. De Rosa C, Auriemma F (2006) Structural–mechanical phase diagram of isotactic polypropylene. J Am Chem Soc 128(34):11024–11025

    PubMed  Google Scholar 

  40. Lu H, Qiao J, Yang Y (2002) Effect of isotacticity distribution on crystallization kinetics of polypropylene. Polym Int 51(12):1304–1309

    CAS  Google Scholar 

  41. Lu H, Qiao J, Xu Y, Yang Y (2002) Effect of isotacticity distribution on the crystallization and melting behavior of polypropylene. J Appl Polym Sci 85(2):333–341

    CAS  Google Scholar 

  42. Kang J, Yang F, Wu T, Li H, Liu D, Cao Y et al (2012) Investigation of the stereodefect distribution and conformational behavior of isotactic polypropylene polymerized with different Ziegler–Natta catalysts. J Appl Polym Sci 125(4):3076–3083

    CAS  Google Scholar 

  43. Kang J, Li J, Chen S, Peng H, Wang B, Cao Y et al (2013) Investigation of the crystallization behavior of isotactic polypropylene polymerized with different Ziegler–Natta catalysts. J Appl Polym Sci 129(5):2663–2670

    CAS  Google Scholar 

  44. Kang J, Xiong B, Liu D, Cao Y, Chen J, Yang F et al (2014) Understanding in the morphology and tensile behavior of isotactic polypropylene cast films with different stereo-defect distribution. J Polym Res 21(6):1–10

    Google Scholar 

  45. Peng H, Wang B, Gai J, Chen J, Yang F, Cao Y et al (2014) Morphology and mechanical behavior of isotactic polypropylene with different stereo-defect distribution in injection molding. Polym Adv Technol 25(12):1464–1470

    Google Scholar 

  46. Kang J, Wang B, Peng H, Chen J, Cao Y, Li H et al (2014) Investigation on the structure and crystallization behavior of controlled-rheology polypropylene with different stereo-defect distribution. Polym Bull 71(3):563–579

    Google Scholar 

  47. Xiaodong Zhang GS (1992) Effect of β-nucleator content on the crystallization and melting behavior of β-phase polypropylene. Acta Polym Sin 1(3):293–298

    Google Scholar 

  48. Marco C, Gómez MA, Ellis G, Arribas JM (2002) Activity of a β-nucleating agent for isotactic polypropylene and its influence on polymorphic transitions. J Appl Polym Sci 86(3):531–539

    CAS  Google Scholar 

  49. Kang J, Zhang JY, Chen ZF, Yang F, Chen JY, Cao Y, Xiang M (2014) Isothermal crystallization behavior of β-nucleated isotactic polypropylene with different melt structures. J Polym Res 21(506):1–9

    Google Scholar 

  50. Li JX, Cheung WL, Jia D (1999) A study on the heat of fusion of β-polypropylene. Polymer 40(5):1219–1222

    CAS  Google Scholar 

  51. Mohsen-Nia M, Memarzadeh MR (2013) Characterization and non-isothermal crystallization behavior of biodegradable poly(ethylene sebacate)/SiO2 nanocomposites. Polym Bull 70(8):2471–2491

    CAS  Google Scholar 

  52. Gao J, Cao X, Zhang C, Hu W (2013) Non-isothermal crystallization kinetics of polypropylene/MAP-POSS nanocomposites. Polym Bull 70(7):1977–1990

    CAS  Google Scholar 

  53. Shi YH, Dou Q (2012) Non-isothermal crystallization kinetics of β-nucleated isotactic polypropylene. J Therm Anal Calorim 112(2):901–911

    Google Scholar 

  54. Scherrer P (1918) Bestimmung der Grösse und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Nachr Ges Wiss Göttingen 26:98–100

    Google Scholar 

  55. Zhang Q, Chen Z, Wang B, Chen J, Yang F, Kang J et al (2014) Effects of melt structure on crystallization behavior of isotactic polypropylene nucleated with α/β compounded nucleating agents. J Appl Polym Sci 132(4):41355

    Google Scholar 

  56. Kang J, Chen Z, Zhou T, Yang F, Chen J, Cao Y et al (2014) Dynamic crystallization and melting behavior of β-nucleated isotactic polypropylene with different melt structures. J Polym Res 21(4):1–12

    Google Scholar 

  57. Wu T, Xiang M, Cao Y, Kang J, Yang F (2014) Pore formation mechanism of β nucleated polypropylene stretched membranes. RSC Adv 4(69):36689–36701

    CAS  Google Scholar 

  58. Wu T, Xiang M, Cao Y, Kang J, Yang F (2014) Influence of lamellar structure on double yield behavior and pore size distribution in (small beta) nucleated polypropylene stretched membranes. Rsc Adv 81(4):43012–43023

    Google Scholar 

  59. Lotz B (2000) What can polymer crystal structure tell about polymer crystallization processes? Eur Phys J E 3(2):185–194

    CAS  Google Scholar 

  60. Dorset DL, McCourt MP, Kopp S, Schumacher M, Okihara T, Lotz B (1998) Isotactic polypropylene, β-phase: a study in frustration. Polymer 39(25):6331–6337

    CAS  Google Scholar 

  61. Ferro DR, Meille SV, Brückner S (1998) Energy Calculations for Isotactic Polypropylene: a Contribution To Clarify the β Crystalline Structure. Macromolecules 31(20):6926–6934

    CAS  Google Scholar 

  62. Olley RH, Bassett DC, Blundell DJ (1986) Permanganic etching of PEEK. Polymer 27(3):344–348

    CAS  Google Scholar 

  63. Kang J, Weng G, Chen Z, Chen J, Cao Y, Yang F et al (2014) New understanding in the influence of melt structure and β-nucleating agents on the polymorphic behavior of isotactic polypropylene. RSC Adv 56(4):29514–29526

    Google Scholar 

  64. Peng H, Wang B, Gai J, Chen J, Yang F, Cao Y et al (2014) Investigation on the morphology and tensile behavior of β-nucleated isotactic polypropylene with different stereo-defect distribution. J Appl Polym Sci 131(6):40027

    Google Scholar 

  65. Du M, Guo B, Wan J, Zou Q, Jia D (2010) Effects of halloysite nanotubes on kinetics and activation energy of non-isothermal crystallization of polypropylene. J Polym Res 17(1):109–118

    CAS  Google Scholar 

  66. Qiu S, Zheng Y, Zeng A, Guo Y, Li B (2011) Non-isothermal crystallization of monomer casting polyamide 6/functionalized MWNTs nanocomposites. Polym Bull 67(9):1945–1959

    CAS  Google Scholar 

  67. Horváth Z, Sajó IE, Stoll K, Menyhárd A, Varga J (2010) The effect of molecular mass on the polymorphism and crystalline structure of isotactic polypropylene. Express Polym Lett 4(2):101–114

    Google Scholar 

  68. Menyhárd A, Varga J, Molnár G (2006) Comparison of different-nucleators for isotactic polypropylene, characterisation by DSC and temperature-modulated DSC (TMDSC) measurements. J Therm Anal Calorim 83(3):625–630

    Google Scholar 

  69. Varga J (2002) β-Modification of isotactic polypropylene: preparation, structure, processing, properties, and application. J Macromol Sci Part B 41(4):1121–1171

    Google Scholar 

  70. Varga J, Karger-Kocsis J (1996) Rules of supermolecular structure formation in sheared isotactic polypropylene melts. J Polym Sci Part B Polym Phys 34:657–670

    CAS  Google Scholar 

  71. Varga J (1995) Crystallization, melting and supermolecular structure of isotactic polypropylene. Polypropyl Struct Blends Compos 1:56–115

    CAS  Google Scholar 

Download references

Acknowledgments

We express our sincere thanks to the Sichuan University Scientific Research Foundation for Young Teachers (2012SCU11075) and National Science Foundation of China (NSFC 51203106) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Kang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Kang, W., Kang, J. et al. Non-isothermal crystallization behavior and melting behavior of Ziegler–Natta isotactic polypropylene with different stereo-defect distribution nucleated with bi-component β-nucleation agent. Polym. Bull. 72, 3283–3303 (2015). https://doi.org/10.1007/s00289-015-1466-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-015-1466-5

Keywords

Navigation