Skip to main content
Log in

Effect of nanoparticle SiO2 grafted poly (methyl methacrylate) on poly(l-lactic) acid crystallization

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

For practical applications of poly(l-lactic acid) (PLLA), PLLA crystallization with keeping transparency is preferable. As one method to keep transparency without inhibiting crystallization, we prepared SiO2 nanoparticles which were modified with poly (methyl methacrylate) (PMMA-g-SiO2). FT-IR and TG–DTA measurement indicated that PMMA was grafted on SiO2 surface successfully. TG–DTA and GPC measurement of free PMMA cleaved from PMMA-g-SiO2 determined graft density of PMMA as 0.039 chains/nm2. The effect of PMMA-g-SiO2 on PLLA crystallization was characterized by DSC measurement and POM observation. Although PMMA-g-SiO2 could not promote PLLA crystallization significantly like commercial crystal nuclear agents, it did not inhibit PLLA crystallization. By UV measurement and Haze meter, it was indicated that crystallized PLLA with PMMA-g-SiO2 generated 3.5–5.3 times higher transparency than crystallized PLLA with/without commercial nucleating agent. TEM observation indicated that the aggregation size of PMMA-g-SiO2 was 21.7 ± 13.9 nm which was smaller than visible wavelength. Transparency improvement likely resulted from size-reduced aggregation of PMMA-g-SiO2 in PLLA matrix. On the other hand, PMMA-g-SiO2 made size of generated spherulite smaller but increased its number in PLLA matrix, which inhibited transparency improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig.2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Gupta B, Revagade N, Hilborn J (2007) Poly (lactic acid) fiber: an overview. Prog Polym Sci 32:455–482

    Article  CAS  Google Scholar 

  2. Lim LT, Auras R, Rubino M (2008) Processing technologies for poly (lactic acid). Prog Polym Sci 33:820–852

    Article  CAS  Google Scholar 

  3. Armentano I, Bitinis N, Fortunati E, Mattioli S, Rescignano N, Verdejo R, Lopez-Manchado MA, Kenny JM (2013) Multifunctional nanostructured PLA materials for packaging and tissue engineering. Prog Polym Sci 38:1720–1747

    Article  CAS  Google Scholar 

  4. Fundador NGV, Enomoto-Rogers Y, Takemura A, Iwata T (2013) Xylan esters as bio-based nucleating agents for poly(l-lactic acid). Polym Degrad Stab 98:1064–1071

    Article  CAS  Google Scholar 

  5. Kim Y, Jung R, Kim HS, Jin HJ (2009) Transparent nanocomposites prepared by incorporating microbial nanofibrils into poly(l-lactic acid). Curr Appl Phys 9:s69–s71

    Article  Google Scholar 

  6. Herrera N, Mathew AP, Oksman K (2015) Plasticized polylactic acid/cellulose nanocomposites prepared using melt-extrusion and liquid feeding: mechanical, thermal and optical properties. Compos Sci Technol 106:149–155

    Article  CAS  Google Scholar 

  7. Nakajima H, Takahashi M, Kimura Y (2010) Induced crystallization of PLLA in the presence of 1,3,5-benzenetricarboxylamide derivatives as nucelators: preparation of haze-free crystalline PLLA materials. Macromol Mater Eng 295:460–468

    CAS  Google Scholar 

  8. Tsuji H, Tashiro K, Bouapao L, Narita J (2008) Polyglycolide as a biodegradable nucleating agent for Poly(l-lactide). Macromol Mater Eng 293:947–951

    Article  CAS  Google Scholar 

  9. Tsuji H, Takai H, Saha SK (2006) Isothermal and non-isothermal crystallization behavior of poly(l-lactic acid): effects of stereocomplex as nucleating agent. Polymer 47:3826–3837

    Article  CAS  Google Scholar 

  10. Fundador NGV, Iwata T (2013) Enhanced crystallization of poly(d-lactide) by xylane esters. Polym Degrad Stab 98:2482–2487

    Article  CAS  Google Scholar 

  11. Menyhárd A, Gahleitner M, Varga J, Bernreitner K, Jääskeläinen P, Øysæd H, Pukánszky B (2009) The influence of nucleus density on optical properties in nucleated isotactic polypropylene. Eur Polym J 45:3138–3148

    Article  Google Scholar 

  12. Raquez JM, Habibi Y, Murariu M, Dubois P (2013) Polylactide (PLA)-based nanocomposites. Prog Polym Sci 38:1504–1542

    Article  CAS  Google Scholar 

  13. Nam JY, Ray SS, Okamoto M (2003) Crystallization behavior and morphology of biodegradable polylactide/layered silicate nanocomposite. Macromolecules 36:7126–7131

    Article  CAS  Google Scholar 

  14. Wen X, Lin Y, Han C, Zhang K, Ran X, Li Y, Dong L (2009) Thermomechanical and optical properties of biodegradable poly(l-lactide)/silica nanocomposites by melt compounding. J Appl Polym Sci 114:3379–3388

    Article  CAS  Google Scholar 

  15. Okada A, Usuki A (2006) Twenty years of polymer-clay nanocomposites. Macromol Mater Eng 291:1449–1476

    Article  CAS  Google Scholar 

  16. Papageorgioua GZ, Achiliasa DS, Nanakia S, Beslikasb T, Bikiarisa D (2010) PLA nanocomposites: effect of filler type on non-isothermal crystallization. Thermochimi Acta 511:129–139

    Article  Google Scholar 

  17. Ray SS, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28:1539–1641

    Article  CAS  Google Scholar 

  18. Jonoobi M, Harun J, Mathew AP, Oksman K (2010) Mechanical properties of cellulose nanofiber (CNF) reinforced polylactic acid (PLA) prepared by twin screw extrusion. Compos Sci Technol 70:1742–1747

    Article  CAS  Google Scholar 

  19. Nakagaito AN, Fujimura A, Sakai T, Hama Y, Yano H (2009) Production of microfibrillated cellulose (MFC)-reinforced polylactic acid (PLA) nanocomposites from sheets obtained by a papermaking-like process. Compos Sci Technol 69:1293–1297

    Article  CAS  Google Scholar 

  20. Frone AN, Berlioz S, Chailan JF, Panaitescu DM (2013) Morphology and thermal properties of PLA-cellulose nanofibers composites. Carbohydr Polym 91:377–384

    Article  CAS  Google Scholar 

  21. Pantani R, Gorrasi G, Vigliotta G, Murariu M, Dubios P (2013) PLA-ZnO nanocomposite films: water vapor barrier properties and specific end-use characteristics. Eur Polym J 49:3471–3482

    Article  CAS  Google Scholar 

  22. Rhin JW, Hong SI, Ha CS (2009) Tensile, water vapor barrier and antimicrobial properties of PLA/nanoclay composite films. LWT Food Sci Technol 42:612–617

    Article  Google Scholar 

  23. Molinaro S, Romero MC, Boaro M, Sensidoni A, Lagazio C, Morris M, Kerry J (2013) Effect of nanoclay-type and PLA optical purity on the characteristics of PLA-based nanocomposite films. J Food Eng 117:113–123

    Article  CAS  Google Scholar 

  24. Nakayama N, Hayashi T (2007) Preparation and characterization of poly(l-lactic acid)/TiO2 nanoparticle nanocomposite films with high transparency and efficient photodegradability. Polym Degrad Stab 92:1255–1264

    Article  CAS  Google Scholar 

  25. Fukushima K, Fina A, Geobaldo F, Venturello A, Camino G (2012) Properties of poly(lactic acid) nanocomposites based on montmorillonite, sepiolite and zirconium phosphonate. Express Polym Lett 6(11):914–926

    Article  CAS  Google Scholar 

  26. Wu H, Liu C, Chen J, Chan PR, Chen Y, Anderson DP (2009) Structure and properties of starch/α-zirconium phosphate nanocomposite films. Carbohydr Polym 77:358–364

    Article  CAS  Google Scholar 

  27. Kim S, Kim E, Kim S, Kim W (2005) Surface modification of silica nanoparticles by UV-induced graft polymerization of methyl methacrylate. J Colloid Interface Sci 292:93–98

    Article  CAS  Google Scholar 

  28. Yan S, Yin J, Yang Y, Dai Z, Ma J, Chen X (2007) Surface-grafted silica linked with l-lactic acid oligomer: a novel nanofiller to improve the performance of biodegradable poly(l-lactide). Polymer 48:1688–1694

    Article  CAS  Google Scholar 

  29. Wu L, Cao D, Huang Y, Li BG (2008) Poly(l-lactic acid)/SiO2 nanocomposites via in situ melt polycondensation of l-lactic acid in the presence of acidic silica sol: preparation and characterization. Polymer 49:742–748

    Article  CAS  Google Scholar 

  30. Akcora P, Kumar SK, Sakai VG, Li Y, Benicewicz BC, Schadler LS (2010) Segmental dynamics in PMMA-grafted nanoparticle composites. Macromolecules 43:8275–8281

    Article  CAS  Google Scholar 

  31. Chevigny C, Dalmas F, Cola ED, Gigmes D, Bertin D, Boue F, Jestin J (2011) Polymer-grafted-nanoparticles nanocomposites: dispersion, grafted chain conformation, and rheological behavior. Macromolecules 44:122–133

    Article  CAS  Google Scholar 

  32. Advincula RC, Brittain WJ, Caster KC, Ruhe J (2004) Polymer brushes. Wiley, Weinheim

    Book  Google Scholar 

  33. Kobayashi M, Takahara A (2005) Synthesis and frictional properties of poly (2, 3-dihydroxypropyl methacrylate) brush prepared by surface-initiated atom transfer radical polymerization. Chem Lett 34(12):1582–1583

    Article  CAS  Google Scholar 

  34. Tsuji Y, Ohno K, Yamamoto S, Goto A, Fukuda T (2006) Structure and properties of high-density polymer brushes prepared by surface-initiated living radical polymerization. Adv Polym Sci 197:1–45

    Article  Google Scholar 

  35. Kobayashi M, Terayama Y, Hosaka N, Kaido M, Suzuki A, Yamada N, Torikai N, Ishihara K, Takahara A (2007) Friction behavior of high-density poly(2-methacryloyloxyethyl phosphorylcholine) brush in aqueous media. Soft Mater 3:740–746

    Article  CAS  Google Scholar 

  36. Kobayashi M, Terada M, Terayama Y, Kikuchi M, Takahara A (2010) Direct synthesis of well-defined poly[{2-(methacryloyloxy)ethyl}trimethylammonium chloride] brush via surface-initiated atom transfer radical polymerization in fluoroalcohol. Macromolecules 43:8409–8415

    Article  CAS  Google Scholar 

  37. Terayama Y, Kikuchi M, Kobayashi M, Takahara A (2011) Well-defined poly(sulfobetaine) brushes prepared by surface-initiated ATRP using a fluoroalcohol and ionic liquids as the solvents. Macromolecules 44:104–111

    Article  CAS  Google Scholar 

  38. Ohno K, Morinaga T, Koh K, Tsujii Y, Fukuda T (2005) Synthesis of monodisperse silica particles coated with well-defined, high-density polymer brushes by surface-initiated atom transfer radical polymerization. Macromolecules 38:2137–2142

    Article  CAS  Google Scholar 

  39. Matsuda Y, Kobayashi M, Annaka M, Ishihara K, Takahara A (2008) Dimensions of a free linear polymer and polymer immobilized on silica nanoparticles of a zwitterionic polymer in aqueous solutions with various ionic strengths. Langumuir 24:8772–8778

    Article  CAS  Google Scholar 

  40. Yano H, Sugiyama J, Nakagaito AN, Nogi M, Matsuura T, Hikita M, Handa K (2005) Optically transparent composites reinforced with networks of bacterial nanofibers. Adv Mater 17(2):153–155

    Article  CAS  Google Scholar 

  41. Novak BM (1993) Hybrid nanocomposite materials—between inorganic glasses and organic polymers. Adv Mater 5:422–433

    Article  CAS  Google Scholar 

  42. Beecroft LL, Ober CK (1997) Nanocomposite materials for optical applications. Chem Mater 9:1302–1317

    Article  CAS  Google Scholar 

  43. Maruhashi Y, Iida S (2001) Transparency of polymer blends. Polym Eng Sci 41(11):1987–1995

    Article  CAS  Google Scholar 

  44. Norris FH, Stein RS (1958) The scattering of light from thin polymer films IV. Scattering from oriented polymers. J Polym Sci 27:87–114

    Article  CAS  Google Scholar 

  45. Li SH, Woo EM (2008) Effects of chain configuration on UCST behavior in blends of poly(l-lactic acid) with tactic poly(methyl methacrylate)s. J Polym Sci B Polym Phys 46:2355–2369

    Article  CAS  Google Scholar 

  46. Zhang G, Zhang J, Wang S, Shen D (2003) Miscibility and phase structure of binary blends of polylactide and poly(methyl methacrylate). J Polym Sci B Polym Phys 41:23–330

    Article  CAS  Google Scholar 

  47. Shirahase T, Komatsu Y, Tominaga Y, Asai S, Sumita M (2006) Miscibility and hydrolytic degradation in alkaline solution of poly(l-lactide) and poly(methyl methacrylate) blends. Polymer 47:4839–4844

    Article  CAS  Google Scholar 

  48. Eguiburu JL, Iruin JJ, Fernandez-Berridi MJ, Roman JS (1998) Blends of amorphous and crystalline polylactides with poly(methyl methacrylate) and poly(methyl acrylate): a miscibility study. Polymer 39(26):6891–6897

    Article  CAS  Google Scholar 

  49. Li SH, Woo EM (2008) Immiscibility–miscibility phase transitions in blends of poly(l-lactide) with poly(methyl methacrylate). Polym Int 57:1242–1251

    Article  CAS  Google Scholar 

  50. Chinthamanipeta PS, Kobukata S, Nakata H, Shipp DA (2008) Synthesis of poly(methyl methacrylate)–silica nanocomposites using methacrylate-functionalized silica nanoparticles and RAFT polymerization. Polymer 49:5636–5642

    Article  CAS  Google Scholar 

  51. Asaln S, Calandrelli L, Laurienzo P, Malinconico M, Migliaresi C (2000) Poly (d, l-lactic acid)/poly (∈-caprolactone) blend membranes: preparation and morphological characterization. J Mater Sci 35:1615–1622

    Article  Google Scholar 

  52. Ozeki E (1996) Characteristics of poly(l-lactide) as biodegradable plastics. Shimazu hyouron 53(1):61–68 (In Japanese)

    CAS  Google Scholar 

  53. Schulz H, Burtscher P, Madler L (2007) Correlating filler tranparency with inorganic/organic composite transparency. Composite A 38:2451–2459

    Article  Google Scholar 

  54. Hirota S, Sato T, Tominaga Y, Asai A, Sumita M (2006) The effect of high-pressure carbon dioxide treatment on the crystallization behavior and mechanical properties of poly(l-lactic acid)/poly(methyl methacrylate) blends. Polymer 47:3954–3960

    Article  CAS  Google Scholar 

  55. Choochottiros C, Chin IJ (2013) Potential transparent PLA impact modifiers based on PMMA copolymers. Eur Polym J 49:957–966

    Article  CAS  Google Scholar 

  56. Tsuji H, Ikada Y (1995) Properties and morphologies of poly(l-lactide):1. Annealing condition effects on properties and morphologies of poly(l-lactide). Polymer 36(14):2709–2716

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors appreciated Nissan Chemical Industries, Ltd. for kind supply of silica nanoparticles used in this study. The authors also appreciated Dr. Takeshi HIGUCHI for his cooperation in TEM analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomoko Shirahase.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shirahase, T., Kikuchi, M., Shinohara, T. et al. Effect of nanoparticle SiO2 grafted poly (methyl methacrylate) on poly(l-lactic) acid crystallization. Polym. Bull. 72, 1247–1263 (2015). https://doi.org/10.1007/s00289-015-1336-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-015-1336-1

Keywords

Navigation