Skip to main content
Log in

Development of low density polyethylene nanocomposites films for packaging

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Requirements for adequate permeability of polymeric materials to gases and vapors, good barrier and mechanical properties of polymers have boosted interest in developing new strategies to improve these properties. Research and development in polymeric materials coupled with appropriate filler, matrix-filler interaction and new formulation strategies to develop composites have potential applications in various types of packaging (agricultural produce, dried food, frozen food etc.). In this study, LDPE composites containing various types of fillers (zeolite TMAZ 7, nanoclay Cloisite 20A and precipitated calcium carbonate, CaCO3) were prepared using extrusion/injection molding. The microstructural and morphological changes as well as mechanical features of samples were characterized by scanning electronic microscopy and by tensile tests. The thermal degradation of LDPE composites was studied using thermogravimetric analysis. Barrier properties (permeability, the diffusion and the solubility constant) in modified LDPE samples were determined. It is found that used minor clay concentration is already very effective for achievement of good morphology. In the presence of nanoparticles, at lower content, the value of oxygen permeability of LDPE decreases. Also, the results have revealed that the samples containing fillers have increased thermal stability in comparison to pure LDPE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kumanayaka TO, Parthasarathy R, Jollands M (2010) Accelerating effect of montmorillonite on oxidative degradation of polyethylene nanocomposites. Polym Degrad Stab 95:672–676. doi:10.1016/j.polymdegradstab.2009.11.036

    Article  CAS  Google Scholar 

  2. Vaia RA, Giannelis EP (2001) Polymer nanocomposites: status and opportunities. MRS Bull 26:394–401. doi:10.1557/mrs2001.94

    Article  CAS  Google Scholar 

  3. Alexandre M, Dubois P (2000) Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater Sci Eng 28:1–63

    Article  Google Scholar 

  4. Jacquelot E, Espuche E, Gerard JF, Duchet J, Mazabraud P (2006) Morphology and gas barrier properties of polyethylene-based nanocomposites. J Polym Sci Part B: Polym Phys 44:431–440. doi:10.1002/polb.20707

    Article  CAS  Google Scholar 

  5. Washington C (1992) Particle size analysis in pharmaceutics and other industries. Theory and practice. Prentice Hall, Chichester

    Google Scholar 

  6. Pötschke P, Wallheinke K, Fritsche H, Stutz H (1997) Morphology and properties of blends with different thermoplastic polyurethanes and polyolefines. J Appl Polym Sci 64:749–762. doi:10.1002/(SICI)1097-4628(19970425)64:4<749:AID-APP14>3.0.CO;2-P

    Article  Google Scholar 

  7. Cayer-Barrioz J, Ferry L, Frihi D, Cavalier K, Seguela R, Vigier G (2006) Microstructure and mechanical behavior of polyamide 66-precipitated calcium carbonate composites: influence of the particle surface treatment. J Appl Polym Sci 100:989–999. doi:10.1002/app.22826

    Article  CAS  Google Scholar 

  8. Ishida H, Campbell S, Blackwell J (2000) General approach to nanocomposites preparation. Chem Mater 12:1260–1267. doi:10.1021/cm990479y

    Article  CAS  Google Scholar 

  9. Salvalaggio M, Bagatin R, Fornaroli M, Fanutti S, Palmery S, Battistel E (2006) Multi-component analysis of low-density polyethylene oxidative degradation. Polym Degrad Stab 91:2775–2785. doi:10.1016/j.polymdegradstab.2006.03.024

    Article  CAS  Google Scholar 

  10. Jakubowicz I, Enebro J (2012) Effects of reprocessing of oxobiodegradable and non-degradable polyethylene on the durability of recycled materials. Polym Degrad Stab 97:316–321. doi:10.1016/j.polymdegradstab.2011.12.011

    Article  CAS  Google Scholar 

  11. Bonhomme S, Cuer A, Delort AM, Lemaire J, Sancelme M, Scott G (2003) Environmental biodegradation of polyethylene. Polym Degrad Stab 81:441–452. doi:10.1016/S0141-3910(03)00129-0

    Article  CAS  Google Scholar 

  12. Peterson JD, Vyazovkin S, Wight CA (2001) Kinetics of the thermal and thermo-oxidative degradation of polystyrene, polyethylene and poly(propylene). Macromol Chem Phys 202:775–784. doi:10.1002/1521-3935(20010301)202:6<775:AID-MACP775>3.0.CO;2-G

    Article  CAS  Google Scholar 

  13. Kashiwagi T, Gilman JW, Butler KM, Harris RH, Shields JR, Asano A (2000) Flame retardant mechanism of silica gel/silica. Fire Mater 24:277–289. doi:10.1002/1099-1018(200011/12)24:6<277:AID-M746>3.0.CO;2-A

    Article  CAS  Google Scholar 

  14. Laoutid F, Bonnaud L, Alexandre M, Lopez-Cuesta JM, Dubois P (2009) New prospects in flame retardant polymer materials: from fundamentals to nanocomposites. Mat Sci Eng R 63:100–125. doi:10.1016/j.mser.2008.09.002

    Article  Google Scholar 

  15. Isinay E, Yuzay RA, Soto-Valdez H, Selke S (2010) Effects of synthetic and natural zeolites on morphology and thermal degradation of poly (lactic acid) composites. Polym Degrad Stab 95:1769–1777. doi:10.1016/j.polymdegradstab.2010.05.011

    Article  Google Scholar 

  16. Kissinger HE (1956) Variation of peak temperature with heating rate in differential thermal analysis. J Res Nat Bur Stand 57:217–219

    Article  CAS  Google Scholar 

  17. Hilado CJ (1998) Flammability handbook for plastics. Technomic Publishing, Lancaster

    Google Scholar 

  18. Zhou Q, Xanthos M (2009) Nanosize and microsize clay effects on the kinetics of the thermal degradation of polylactides. Polym Degrad Stab 94:327–338. doi:10.1016/j.polymdegradstab.2008.12.009

    Article  CAS  Google Scholar 

  19. Wang KH, Choi MH, Koo CM, Choi YS, Chung IJ (2001) Synthesis and characterization of maleated polyethylene/clay nanocomposites. Polymer 42:9819–9826

    Article  CAS  Google Scholar 

  20. Liang G, Xu J, Bao S, Xu W (2004) Polyethylene/maleic anhydride grafted polyethylene/organic-montmorillonite nanocomposites. I. Preparation, microstructure, and mechanical properties. J Appl Polym Sci 291:3974–3980. doi:10.1002/app.13612

    Article  Google Scholar 

  21. Sun S, Li C, Zhang L, Du HL, Burnell-Gray JS (2006) Effects of surface modification of fumed silica on interfacial structures and mechanical properties of poly(vinyl chloride) composites. Eur Polym J 42:1643–1652. doi:10.1016/j.eurpolymj.2006.01.012

    Article  CAS  Google Scholar 

  22. Meng X, Wang Z, Zhao Z, Du X, Bi W, Tang T (2007) Morphology evolutions of organically modified montmorillonite/polyamide 12 nanocomposites. Polymer 48:2508–2519. doi:10.1016/j.polymer.2007.03.009

    Article  CAS  Google Scholar 

  23. Lincoln DM, Vaia RA, Wang ZG, Hsiao BS, Krishnamoorti R (2001) Temperature dependence of polymer crystalline morphology in nylon 6/montmorillonite nanocomposites. Polymer 42:9975–9985

    Article  CAS  Google Scholar 

  24. Zanetti M, Camino G, Thomann R, Mulhaupt R (2001) Synthesis and thermal behaviour of layered silicate-EVA nanocomposites. Polymer 42:4501–4507 (pii:S0032-3861(00)00775-8)

    Article  CAS  Google Scholar 

  25. Kotsilkova R, Petkova V, Pelovski Y (2001) Thermal analysis of polymer-silicate nanocomposites. J Therm Anal Calorimetry 64:591–598

    Article  CAS  Google Scholar 

  26. Lincoln DM, Vaia RA, Wang ZG, Hsiao BS (2001) Secondary structure and elevated temperature crystallite morphology of nylon-6/layered silicate nanocomposites. Polymer 42:1621–1631 (pii:S0032-3861(00)00414-6)

    Article  CAS  Google Scholar 

  27. Wan C, Qiao X, Zhang Y, Zhang Y (2003) Effect of different clay treatment on morphology and mechanical properties of PVC-clay nanocomposites. Polym Test 22:453–461. doi:10.1016/S0142-9418(02)00126-5

    Article  CAS  Google Scholar 

  28. Fried JR (2003) Polymer science and technology. Person Education, Inc. Prentice Hall, New York

    Google Scholar 

  29. Robertson GL (2010) Food packaging principles and practice. CRC Press, Taylor and Francis Group, Boca Raton

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zlata Hrnjak-Murgić.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siročić, A.P., Rešček, A., Ščetar, M. et al. Development of low density polyethylene nanocomposites films for packaging. Polym. Bull. 71, 705–717 (2014). https://doi.org/10.1007/s00289-013-1087-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-013-1087-9

Keywords

Navigation