Skip to main content
Log in

Mechanical behavior and optical transparency of polyamide 6 of different morphology formed by variation of the pathway of crystallization

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The phase composition and supermolecular structure of polyamide 6 (PA 6) melt-crystallized on cooling at different rates or cold-crystallized at different temperatures were characterized and related to the optical transparency, stiffness and the stress–strain behavior. Cold-crystallization results in non-spherulitic formation of γ-mesophase or α-crystals, depending on the maximum annealing temperature. Both mesophase and crystals are of nodular shape. Melt-crystallization at low supercooling leads to formation of lamellar α-crystals and spherulites, while at high supercooling the nodular mesophase is forming. The absence of spherulites in cold-crystallized PA 6 films leads to high see-through clarity which is in contrast to the slowly melt-crystallized samples with opaque appearance. While Young’s modulus and the glass transition temperature increase with increasing crystallinity, for samples of identical crystallinity stiffness is considerably higher if the crystals are of lamellar rather than of nodular shape. The higher glass transition temperature of cold-crystallized PA 6 is related to a higher rigid amorphous fraction than in melt-crystallized samples pointing to a stronger coupling of the amorphous phase to ordered domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Page IB (2000) Polyamides as engineering thermoplastic materials. Rapra review reports, vol 11. Rapra Technology Ltd

  2. Elias H-G (2003) An introduction to plastics. Wiley-VCH, Weinheim

    Google Scholar 

  3. Kohan MI (1995) Nylon plastics handbook. Carl Hanser, Munich

    Google Scholar 

  4. Illers K-H, Haberkorn H (1971) Schmelzverhalten, Struktur und Kristallinität von 6-polyamid. Macromol Chem 142:31–67

    Article  CAS  Google Scholar 

  5. Kyotani M, Mitsuhashi S (1972) Studies on crystalline forms of Nylon 6. II. Crystallization from the melt. J Polym Sci Part A-2 10:1497–1508

    Article  CAS  Google Scholar 

  6. Brucato V, Piccarolo S, Titomanlio G (1993) Crystallization kinetics in relation to polymer processing. Macromol Chem Macromol Symp 68:245–255

    Article  CAS  Google Scholar 

  7. Gurato G, Fichera A, Grandi FZ, Zannetti R, Canal P (1974) Crystallinity and polymorphism of 6-polyamide. Macromol Chem 175:953–975

    Article  CAS  Google Scholar 

  8. Brucato V, Crippa G, Piccarolo S, Titomanlio G (1991) Crystallization of polymer melts under fast cooling. I. Nucleated polyamide 6. Polym Eng Sci 31:1411–1416

    Article  CAS  Google Scholar 

  9. Brucato V, Piccarolo S, La Carruba V (2002) An experimental methodology to study polymer crystallization under processing conditions. The influence of high cooling rates. Chem Eng Sci 57:4129–4131

    Article  CAS  Google Scholar 

  10. Cavallo D, Gardella L, Alfonso GC, Portale G, Balzano L, Androsch R (2011) Effect of cooling rate on the crystal/mesophase polymorphism of polyamide 6. Colloid Polym Sci 289:1073–1079

    Article  CAS  Google Scholar 

  11. Androsch R, Stolp M, Radusch H-J (1996) Crystallization of amorphous polyamides from the glassy state. Acta Polym 47:99–104

    Article  CAS  Google Scholar 

  12. Kolesov I, Androsch R (2012) The rigid amorphous fraction of cold-crystallized polyamide 6. Polymer 53:4770–4777

    Article  CAS  Google Scholar 

  13. Ziabicki A (1959) Über die mesomorphe β-Form von Polycapronamid und ihre Umwandlung in die kristalline Form α. Kolloid-Zeitschrift Zeitschr Polym 167:132–141

    Article  CAS  Google Scholar 

  14. Hendus H, Illers KH, Simak P (1969) Kristallisation von amorphem 6-polyamid im Glasübergangsbereich. Kolloid-Zeitschrift Zeitschr Polym 235:1244–1246

    Article  CAS  Google Scholar 

  15. Kozlowski W (1972) Kinetics of crystallization of polyamide 6 from the glassy state. J Polym Sci Part C 38:47–59

    Article  Google Scholar 

  16. Kyotani M (1975) Studies on crystalline forms of Nylon 6. III. Crystallization from the glassy state. J Macromol Sci Phys B11:509–525

    Article  CAS  Google Scholar 

  17. Auriemma F, De Rosa C, Corradini P (2005) Solid mesophases in semicrystalline polymers: structural analysis by diffraction techniques. Adv Polym Sci 181:1–74

    Article  CAS  Google Scholar 

  18. Mathot V, Pyda M, Pijpers T, Vanden Poel G, van de Kerkhof E, van Herwaarden S, van Herwaarden F, Leenaers A (2011) The Flash DSC 1, a power compensation twin-type, chip-based fast scanning calorimeter (FSC): first findings on polymers. Thermochim Acta 522:36–45

    Article  CAS  Google Scholar 

  19. Kolesov I, Mileva D, Androsch R, Schick C (2011) Structure formation of polyamide 6 from the glassy state by fast scanning chip calorimetry. Polymer 52:5156–5165

    Article  CAS  Google Scholar 

  20. Magill JH (2001) Spherulites: a personal perspective. J Mater Sci 36:3143–3164

    Article  CAS  Google Scholar 

  21. Magill JH (1965) Crystallization of polyamides II–nylon 6 and nylon 66. Polymer 6:367–371

    Article  CAS  Google Scholar 

  22. Magill JH (1962) Melting behaviour and spherulitic crystallization of polycaproamide (nylon 6). Polymer 3:43–51

    Article  CAS  Google Scholar 

  23. Magill JH (1962) Crystallization kinetics study of nylon 6. Polymer 3:655–664

    Article  CAS  Google Scholar 

  24. Geil PH (1963) Polymer single crystals, polymer reviews, vol 5. Interscience, New York

    Google Scholar 

  25. Mileva D, Androsch R, Zhuravlev E, Schick C (2012) Morphology of mesophase and crystals of polyamide 6 prepared in a fast scanning chip calorimeter. Polymer 53:3994–4001

    Article  CAS  Google Scholar 

  26. Mileva D, Kolesov I, Androsch R (2012) Morphology of cold-crystallized polyamide 6. Colloid Polym Sci 290:971–978

    Article  CAS  Google Scholar 

  27. Fichera A, Malta V, Marega C, Zannetti R (1988) Temperature dependence of the polymorphous phases of nylon 6. Makromol Chem 189:1561–1567

    Article  CAS  Google Scholar 

  28. Zia Q, Radusch H-J, Androsch R (2009) Deformation behavior of isotactic polypropylene crystallized via a mesophase. Polym Bull 63:755–771

    Article  CAS  Google Scholar 

  29. Mileva D, Zia Q, Androsch R (2010) Tensile properties of random copolymers of propylene with ethylene and 1-butene: effect of crystallinity and crystal habit. Polym Bull 65:623–634

    Article  CAS  Google Scholar 

  30. Halpin JC, Kardos JL (1976) Halpin-Tsai equations: a review. Polym Eng Sci 16:344–352

    Article  CAS  Google Scholar 

  31. Boyd RH (1983) The mechanical moduli of lamellar semicrystalline polymers. J Polym Sci B Polym Phys 21:493–504

    Article  CAS  Google Scholar 

  32. Crist B, Fisher CJ, Howard PR (1989) Mechanical properties of model polyethylenes: tensile elastic modulus and yield stress. Macromolecules 22:1709–1718

    Article  CAS  Google Scholar 

  33. Doyle MJ (2000) On the effect of crystallinity on the elastic properties of semicrystalline polyethylene. Polym Eng Sci 40:330–335

    Article  CAS  Google Scholar 

  34. Bédoui F, Diani J, Régnier G (2004) Micromechanical modeling of elastic properties in polyolefins. Polymer 45:2433–2442

    Article  Google Scholar 

  35. Zia Q, Androsch R, Radusch H-J (2010) Effect of the structure at the micrometer and nanometer scales on the light transmission of isotactic polypropylene. J Appl Polym Sci 117:1013–1020

    Article  CAS  Google Scholar 

  36. Mileva D, Androsch R, Radusch H-J (2009) Effect of the structure on light transmission in isotactic polypropylene and random propylene-1-buten copolymers. Polym Bull 62:561–571

    Article  CAS  Google Scholar 

  37. Shibayama M, Imamura K-I, Katoh K, Nomura S (1991) Transparency of recycled polypropylene film. J Appl Polym Sci 42:1451–1458

    Article  CAS  Google Scholar 

  38. Mayhan KG, James WJ, Bosch W (1965) Poly(ethylene terephthalate). I. Study of crystallization kinetics. J Appl Polym Sci 9:3605–3616

    Article  CAS  Google Scholar 

  39. Wunderlich B (2003) Reversible melting and the rigid-amorphous phase in semicrystalline macromolecules. Progr Polym Sci 28:383–450

    Article  CAS  Google Scholar 

  40. Androsch R, Wunderlich B (2005) The link between rigid amorphous fraction and crystal perfection in cold-crystallized poly(ethylene terephthalate). Polymer 46:12556–12566

    Article  CAS  Google Scholar 

  41. Androsch R, Wunderlich B (2007) Scanning calorimetry. In: Matyjaszewski K, Gnanou Y, Leibler L (eds) Structure–property correlation and characterization techniques. Macromolecular engineering: precise synthesis, materials properties, applications, vol 3. Wiley-VCH, Weinheim

    Google Scholar 

  42. Wunderlich B (1980) Crystal melting. In: Macromolecular physics, vol 3. Academic Press, New York

  43. Wunderlich B (2005) Thermal analysis of polymeric materials. Springer, Berlin

    Google Scholar 

  44. Adamovsky SA, Minakov AA, Schick C (2003) Scanning microcalorimetry at high cooling rate. Thermochim Acta 403:55–63

    Article  CAS  Google Scholar 

  45. Minakov AA, Mordvintsev DA, Schick C (2004) Melting and reorganization of poly(ethylene terephthalate) on fast heating (1000 K/s). Polymer 45:3755–3763

    Article  CAS  Google Scholar 

  46. Zhuravlev E, Schick C (2010) Fast scanning power compensated differential scanning nano-calorimeter: 1. The device. Thermochim Acta 505:1–13

    Article  CAS  Google Scholar 

  47. Lauritzen JI, Hoffman JD (1960) Theory of formation of polymer crystals with folded chains in dilute solution. J Res Natl Bureau Stand A Phys Chem 64A:73–102

    Article  CAS  Google Scholar 

  48. Wunderlich B (1976) Crystal nucleation, growth, annealing. In: Macromolecular physics, vol 2. Academic Press, New York

  49. Hoffman JD, Miller RL (1997) Kinetics of crystallization from the melt and chain folding in polyethylene fractions revisited: theory and experiment. Polymer 38:3151–3212

    Article  CAS  Google Scholar 

  50. Stein RS, Prud’homme R (1971) Origin of polyethylene transparency. J Polym Sci Polym Lett Ed 9:595–598

    Article  CAS  Google Scholar 

  51. Bheda JH, Spruiell JE (1986) The effect of process and polymer variables on the light transmission properties of polypropylene tubular blown films. Polym Eng Sci 26:736–745

    Article  CAS  Google Scholar 

  52. Tashiro K, Tadokoro H (1981) Calculation of three-dimensional elastic constants of polymer crystals. 3. α and γ forms of nylon 6. Macromolecules 14:781–785

    Article  CAS  Google Scholar 

  53. Tashiro K, Kobayashi M (1996) Molecular theoretical study of the intimate relationship between structure and mechanical properties of polymer crystals. Polymer 37:1775–1786

    Article  CAS  Google Scholar 

  54. Li Y, Goddard WA (2002) Nylon 6 crystal structures, folds, and lamellae from theory. Macromolecules 35:8440–8455

    Article  CAS  Google Scholar 

  55. Ahmed S, Jones FR (1990) A review of particulate reinforcement theories for polymer composites. J Mater Sci 25:4933–4942

    Article  CAS  Google Scholar 

  56. Hu H, Onyebueke L, Abatan A (2010) Characterizing and modeling mechanical properties of nanocomposites-review and evaluation. J Miner Mater Charact Eng 9:275–319

    Google Scholar 

  57. Advanced Thermal Analysis System—ATHAS. http://athas.prz.rzeszow.pl

  58. Zia Q, Mileva D, Androsch R (2008) Rigid amorphous fraction in isotactic polypropylene. Macromolecules 41:8095–8102

    Article  CAS  Google Scholar 

  59. Menges G, Haberstroh E, Michaeli W, Schmachtenberg E (2002) Werkstoffkunde Kunststoffe. Carl Hansen, München

    Google Scholar 

Download references

Acknowledgments

Financial support by the Deutsche Forschungsgemeinschaft (Grant AN 212/9) is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Kolesov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kolesov, I., Mileva, D. & Androsch, R. Mechanical behavior and optical transparency of polyamide 6 of different morphology formed by variation of the pathway of crystallization. Polym. Bull. 71, 581–593 (2014). https://doi.org/10.1007/s00289-013-1079-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-013-1079-9

Keywords

Navigation