Skip to main content
Log in

Investigation on the structure and crystallization behavior of controlled-rheology polypropylene with different stereo-defect distribution

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Understanding concerning the influence of peroxide degradation on the stereo-defect distribution and related crystallization kinetics of controlled-rheology polypropylene are of great importance. In this study, two iPP samples (PP-A, PP-B) with similar molecular weights and average isotacticities, but different stereo-defect distributions and their degradation productions after the addition of dicumyl peroxide (DCP) were prepared. Their melt flow indexes (MFI), stereo-defect distributions, crystallization behaviors and kinetics were studied using MFI measurement, differential scanning calorimetry, wide-angle X-ray diffraction, non-isothermal crystallization kinetics and successive self-nucleation and annealing fractionation. The results showed that as the content of DCP increased, the MFI, the crystallization temperature and crystallization rate of PP increased gradually, the crystallization peak width became narrower, and the crystallite size decreased. Meanwhile, the addition of DCP greatly restrained the formation of thick lamellae and narrowed its stereo-defect distribution [meso-sequence length (MSL) distribution]. On the other hand, results showed that PP resins with different stereo-defect distribution have similar MFI variations after degradation. PP-A (whose stereo-defect distribution was less uniform than PP-B) and its degradation products still possess higher crystallization rate, stronger crystallizability, smaller crystallite size and higher fractions of long MSL, compared with their counterparts of PP-B.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Fan J, Feng J (2013) Study on β-nucleated controlled-rheological polypropylene random copolymer: crystallization behavior and a possible degradation mechanism. Ind Eng Chem Res 52(2):761–770

    Article  CAS  Google Scholar 

  2. Salazar A, Martin T, Navarro JM, Rodriguez J (2011) Fracture behaviour of controlled-rheology ethylene-propylene block copolymers. Polym Int 60(5):765–771

    Article  CAS  Google Scholar 

  3. Cao J, Lu QF (2011) Crystalline structure, morphology and mechanical properties of β-nucleated controlled-rheology polypropylene random copolymers. Polym Test 30(8):899–906

    Article  CAS  Google Scholar 

  4. Wang SW, Yang W, Xu YJ, Xie BH, Yang MB, Peng XF (2008) Crystalline morphology of β-nucleated controlled-rheology polypropylene. Polym Test 27(5):638–644

    Article  CAS  Google Scholar 

  5. Azizi H, Ghasemi I, Karrabi M (2008) Controlled-peroxide degradation of polypropylene: rheological properties and prediction of MWD from rheological data. Polym Test 27(5):548–554

    Article  CAS  Google Scholar 

  6. Azizi H, Ghasemi I (2004) Reactive extrusion of polypropylene: production of controlled-rheology polypropylene (CRPP) by peroxide-promoted degradation. Polym Test 23(2):137–143

    Article  CAS  Google Scholar 

  7. Wu L, Lynch DT, Wanke SE (1999) Kinetics of gas-phase ethylene polymerization with morphology-controlled MgCl2-supported TiCl4 catalyst. Macromolecules 32(24):7990–7998

    Article  CAS  Google Scholar 

  8. Baik JJ, Tzoganakis C (1998) A study of extrudate distortion in controlled-rheology polypropylenes. Polym Eng Sci 38(2):274–281

    Article  CAS  Google Scholar 

  9. Triacca VJ, Gloor PE, Zhu S, Hrymak AN, Hamielec AE (1993) Free radical degradation of polypropylene: random chain scission. Polym Eng Sci 33(8):445–454. doi:10.1002/pen.760330802

    Article  CAS  Google Scholar 

  10. Tzoganakis C, Tang Y, Vlachopoulos J, Hamielec AE (1989) Controlled degradation of polypropylene: a comprehensive experimental and theoretical investigation. Polym Plast Tech Eng 28(3):319–350

    Article  CAS  Google Scholar 

  11. Sheng BR, Li B, Xie BH, Yang W, Feng JM, Yang MB (2008) Influences of molecular weight and crystalline structure on fracture behavior of controlled-rheology-polypropylene prepared by reactive extrusion. Polym Degrad Stab 93(1):225–232

    Article  CAS  Google Scholar 

  12. Pabedinskas A, Cluett WR, Balke ST (1989) Process control for polypropylene degradation during reactive extrusion. Polym Eng Sci 29(15):993–1003

    Article  CAS  Google Scholar 

  13. Chen X, Yu P, Huang B, Long P (2011) Dynamic mechanical behavior of mPE/mEP blends: experimental and prediction. Polym Bull 68(3):815–827

    Article  Google Scholar 

  14. Zhang C, Niu H, Dong JY (2011) Fabrication of long chain branched polypropylene using click chemistry. Polym Bull 68(4):949–959

    Article  Google Scholar 

  15. Kang J, Yang F, Wu T, Li H, Cao Y, Xiang M (2012) Polymerization control and fast characterization of the stereo-defect distribution of heterogeneous Ziegler–Natta isotactic polypropylene. Eur Polym J 48(2):425–434

    Article  CAS  Google Scholar 

  16. De Rosa C, Auriemma F, Spera C, Talarico G, Tarallo O (2004) Comparison between polymorphic behaviors of Ziegler–Natta and metallocene-made isotactic polypropylene: the role of the distribution of defects in the polymer chains. Macromolecules 37(4):1441–1454

    Article  Google Scholar 

  17. Sita LR (2011) Duality in catalyst design: the synergistic coupling of steric and stereoelectronic control over polyolefin microstructure. Ang Chem Int Ed 50(31):6963–6965

    Article  CAS  Google Scholar 

  18. Zhang HX, Lee YJ, Park JR, Lee DH, Yoon KB (2011) Control of molecular weight distribution for polypropylene obtained by commercial Ziegler–Natta catalyst: effect of temperature. Polym Bull 67(8):1519–1527

    Article  CAS  Google Scholar 

  19. Kang J, Gai J, Li J, Chen S, Peng H, Wang B, Cao Y, Li H, Chen J, Yang F, Xiang M (2013) Dynamic crystallization and melting behavior of β-nucleated isotactic polypropylene polymerized with different Ziegler–Natta catalysts. J Polym Res 20(2):1–11

    Article  CAS  Google Scholar 

  20. Kang J, Li J, Chen S, Peng H, Wang B, Cao Y, Li H, Chen J, Gai J, Yang F, Xiang M (2013) Investigation of the crystallization behavior of isotactic polypropylene polymerized with different Ziegler–Natta catalysts. J Appl Polym Sci 129(5):2663–2670

    Article  CAS  Google Scholar 

  21. Kang J, Yang F, Wu T, Li H, Liu D, Cao Y, Xiang M (2012) Investigation of the stereodefect distribution and conformational behavior of isotactic polypropylene polymerized with different Ziegler–Natta catalysts. J Appl Polym Sci 125(4):3076–3083

    Article  CAS  Google Scholar 

  22. Chang H, Zhang Y, Ren S, Dang X, Zhang L, Li H, Hu Y (2012) Study on the sequence length distribution of polypropylene by the successive self-nucleation and annealing (SSA) calorimetric technique. Polym Chem 3(10):2909

    Article  CAS  Google Scholar 

  23. De Rosa C, Auriemma F, Galotto NG, Di Girolamo R (2012) Mesomorphic form of isotactic polypropylene in stereodefective polypropylene: solid mesophase or liquid-crystal like structure. Polymer 53(12):2422–2428

    Article  Google Scholar 

  24. Kang J, Cao Y, Li H, Li J, Chen S, Yang F, Xiang M (2012) Influence of the stereo-defect distribution on the crystallization behavior of Ziegler–Natta isotactic polypropylene. J Polym Res 19(12):1–11

    Article  CAS  Google Scholar 

  25. Kang J, Chen J, Cao Y, Li H (2010) Effects of ultrasound on the conformation and crystallization behavior of isotactic polypropylene and β-isotactic polypropylene. Polymer 51(1):249–256

    Article  CAS  Google Scholar 

  26. Tabatabaei SH, Carreau PJ, Ajji A (2008) Microporous membranes obtained from polypropylene blend films by stretching. J Membr Sci 325:772–782

    Article  CAS  Google Scholar 

  27. Kang J, Li J, Chen S, Zhu S, Li H, Cao Y, Yang F, Xiang M (2013) Hydrogenated petroleum resin effect on the crystallization of isotactic polypropylene. J Appl Polym Sci. doi:10.1002/app.38699

    Google Scholar 

  28. Lorenzo AT, Arnal ML, Muller AJ, Lin MC, Chen HL (2011) SAXS/DSC analysis of the lamellar thickness distribution on a SSA thermally fractionated model polyethylene. Macromol Chem Phys 212(18):2009–2016

    Article  CAS  Google Scholar 

  29. Muller AJ, Lorenzo AT, Arnal ML (2009) Recent advances and applications of “Successive Self-Nucleation and Annealing” (SSA) high speed thermal fractionation. Macromol Symposia 277(1):207–214

    Article  CAS  Google Scholar 

  30. Muller AJ, Arnal ML (2005) Thermal fractionation of polymers. Prog Polym Sci 30(5):559–603

    Article  Google Scholar 

  31. Gao J, Cao X, Zhang C, Hu W (2013) Non-isothermal crystallization kinetics of polypropylene/MAP-POSS nanocomposites. Polym Bull 70(7):1977–1990

    Article  CAS  Google Scholar 

  32. Mohsen-Nia M, Memarzadeh MR (2013) Characterization and non-isothermal crystallization behavior of biodegradable poly (ethylene sebacate)/SiO2 nanocomposites. Polym Bull. doi:10.1007/s00289-013-0967-3

    Google Scholar 

  33. Qiu S, Zheng Y, Zeng A, Guo Y, Li B (2011) Non-isothermal crystallization of monomer casting polyamide 6/functionalized MWNTs nanocomposites. Polym Bull 67(9):1945–1959

    Article  CAS  Google Scholar 

  34. Xiao WC, Wu PY, Feng JC, Yao RY (2009) Influence of a novel β-nucleating agent on the structure, morphology, and nonisothermal crystallization behavior of isotactic polypropylene. J Appl Polym Sci 111(2):1076–1085

    Article  CAS  Google Scholar 

  35. Wei ZY, Zhang WX, Chen GY, Liang JC, Yang S, Wang P, Liu L (2010) Crystallization and melting behavior of isotactic polypropylene nucleated with individual and compound nucleating agents. J Therm Anal Calorim 102(2):775–783

    Article  CAS  Google Scholar 

  36. Ariffin A, Ariff ZM, Jikan SS (2010) Evaluation on nonisothermal crystallization kinetics of polypropylene/kaolin composites by employing Dobreva and Kissinger methods. J Therm Anal Calorim 103(1):171–177

    Article  Google Scholar 

  37. Hao W, Li W, Yang W, Shen L (2011) Effect of silicon nitride nanoparticles on the crystallization behavior of polypropylene. Polym Test 30(5):527–533

    Article  CAS  Google Scholar 

  38. Lorenzo AT, Arnal ML, Muller AJ, Boschetti de Fierro A, Abetz V (2006) High speed SSA thermal fractionation and limitations to the determination of lamellar sizes and their distributions. Macromol Chem Phys 207(1):39–49

    Article  CAS  Google Scholar 

  39. Perez CJ, Villarreal N, Pastor JM, Failla MD, Valles EM, Carella JM (2009) The use of SSA fractionation to detect changes in the molecular structure of model ethylene–butene copolymers modified by peroxide crosslinking. Polym Degrad Stab 94(10):1639–1645

    Article  CAS  Google Scholar 

  40. Virkkunen V, Laari P, Pitkanen P, Sundholm F (2004) Tacticity distribution of isotactic polypropylene prepared with heterogeneous Ziegler–Natta catalyst. 2. Application and analysis of SSA data for polypropylene. Polymer 45(14):4623–4631

    Article  CAS  Google Scholar 

  41. Muller A, Hernandez Z, Arnal M, Sanchez J (1997) Successive self-nucleation/annealing (SSA): a novel technique to study molecular segregation during crystallization. Polym Bull 39(4):465–472

    Article  CAS  Google Scholar 

  42. Gedde UW (1995) Polymer physics, 2nd edn. Springer, Berlin

  43. Bond EB, Spruiell JE, Lin JS (1999) A WAXD/SAXS/DSC study on the melting behavior of Ziegler–Natta and metallocene catalyzed isotactic polypropylene. J Polym Sci Part B Polym Phys 37(21):3050–3064

    Article  CAS  Google Scholar 

  44. Iijima M, Strobl G (2000) Isothermal Crystallization and melting of isotactic polypropylene analyzed by time- and temperature-dependent small-angle x-ray scattering experiments. Macromolecules 33(14):5204–5214

    Article  CAS  Google Scholar 

  45. Włochowicz A, Eder M (1984) Distribution of lamella thicknesses in isothermally crystallized polypropylene and polyethylene by differential scanning calorimetry. Polymer 25(9):1268–1270

    Article  Google Scholar 

  46. Kravchenko RL, Sauer BB, McLean RS, Keating MY, Cotts PM, Kim YH (2000) Morphology investigation of stereoblock polypropylene elastomer. Macromolecules 33(1):11–13

    Article  CAS  Google Scholar 

  47. Virkkunen V, Laari P, Pitkanen P, Sundholm F (2004) Tacticity distribution of isotactic polypropylene prepared with heterogeneous Ziegler–Natta catalyst. 1. Fractionation of polypropylene. Polymer 45(9):3091–3098

    Article  CAS  Google Scholar 

  48. Paolini Y, Ronca G, Luis Feijoo J, Da Silva E, Ramírez J, Muller AJ (2001) Application of the SSA calorimetric technique to characterise an XLPE insulator aged under multiple stresses. Macromol Chem Phys 202(9):1539–1547

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We express our sincerely thanks to the Sichuan University Scientific Research Foundation for Young Teachers (2012SCU11075) and National Science Foundation of China (NSFC 51203106).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feng Yang or Ming Xiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, J., Wang, B., Peng, H. et al. Investigation on the structure and crystallization behavior of controlled-rheology polypropylene with different stereo-defect distribution. Polym. Bull. 71, 563–579 (2014). https://doi.org/10.1007/s00289-013-1077-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-013-1077-y

Keywords

Navigation