Skip to main content
Log in

A comparative study on antibacterial activities of chitosan based products and their combinations with gentamicin against S. epidermidis and E. coli

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Antibacterial activity of chitosan, and a graft copolymer based on chitosan namely chitosan-graft-poly(N-vinyl imidazole), (Chi-graft-PNVI), was studied against Staphylococcus epidermidis (S. epidermidis) and Escherichia coli (E. coli). The graft copolymer was prepared by two different methods; via an N-protection route and without N-protection to observe the effect of free amine groups on the antibacterial activity. It was further investigated whether a combination of each of these products would produce a synergetic effect with the antibiotic gentamicin against S. epidermidis and E. coli compared to gentamicin alone. Antibacterial activity was determined by the inhibition zone measurement method. Results reveal an improvement in the antibacterial activity of gentamicin, when combined with chitosan or chitosan-based biomaterials against S. epidermidis and E. coli compared to that of gentamicin itself. When gentamicin is used in combination with Chi-graft-PNVI prepared via N-protection, antibacterial activity against S. epidermidis is three times higher in comparison with the activity of gentamicin alone according to the inhibition zone measurements. Gentamicin produces an inhibition zone of 8.2 ± 0.2 mm against S. epidermidis when undiluted, while the inhibition zone increases to 25.8 ± 0.7 mm in combination with Chi-graft-PNVI prepared via N-protection. These combinations have a potential to form a basis for new formulations of gentamicin with improved antibacterial activity and might allow usage of decreased doses of the antibiotic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Davis BD (1987) Mechanism of bactericidal action of aminoglycosides. Microbiol Rev 51:341–350

    CAS  Google Scholar 

  2. Vakulenko SB, Mobashery S (2003) Versatility of aminoglycosides and prospects for their future. Clin Microbiol Rev 16:430–450. doi:10.1128/CMR.16.3

    Article  CAS  Google Scholar 

  3. Zembower TR, Noskin GA, Postelnick MJ, Nguyen C, Peterson LR (1998) The utility of aminoglycosides in an era of emerging drug resistance. Int J Antimicrob Agents 10:95–105. doi:10.1016/S0924-8579(98)00033-8

    Article  CAS  Google Scholar 

  4. Davies J, Wright GD (1997) Bacterial resistance to aminoglycoside antibiotics. Trends Microbiol 5:234–239. doi:10.1016/S0966-842X(97)01033-0

    Article  CAS  Google Scholar 

  5. Hermann T (2007) Aminoglycoside antibiotics: old drugs and new therapeutic approaches. Cell Mol Life Sci 64:1841–1852. doi:10.1007/s00018-007-7034-x

    Article  CAS  Google Scholar 

  6. Kurita K (2001) Controlled functionalization of the polysaccharide chitin. Prog Polym Sci 26:1921–1971. doi:10.1016/S0079-6700(01)00007.7

    Article  CAS  Google Scholar 

  7. Dash M, Chiellini F, Ottenbrite RM, Chiellini RM, Chiellini E (2011) Chitosan—a versatile semi-synthetic polymer in biomedical applications. Prog Polym Sci 36:981–1014. doi:10.1016/j.progpolymsci.2011.02.001

    Article  CAS  Google Scholar 

  8. Koide SS (1998) Chitin-chitosan: properties, benefits and risks. Nutr Res 18:1091–1101. doi:10.1016/S0271-5317(98)00091-8

    Article  CAS  Google Scholar 

  9. Rabea EI, Badawy MET, Stevens CV, Smagghe G, Steurbaut W (2003) Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules 4:1457–1465. doi:10.1021/bm034130m

    Article  CAS  Google Scholar 

  10. Xia WS, Liu P, Zhang JL, Chen J (2011) Biological activities of chitosan and chitooligosaccharides. Food Hydrocoll 25:170–179. doi:10.1016/j.foodhyd.2010.03.003

    Article  CAS  Google Scholar 

  11. Kong M, Chen XG, Xing K, Park HJ (2010) Antimicrobial properties of chitosan and mode of action: a state of the art review. Int J Food Microbiol 144:51–63. doi:10.1016/j.ijfoodmicro.2010.09.012

    Article  CAS  Google Scholar 

  12. Raafat D, von Bargen K, Haas A, Sahl HG (2008) Insights into the mode of action of chitosan as an antibacterial compound. Appl Environ Microb 74:3764–3773. doi:10.1128/AEM.00453-08

    Article  CAS  Google Scholar 

  13. Seo S, King JM, Prinyawiwatkul W, Janes M (2008) Antibacterial activity of ozone-depolymerized crawfish chitosan. J Food Sci 73:M400–M404. doi:10.1111/j.1750-3841.2008.00922.x

    Article  CAS  Google Scholar 

  14. Caner H, Yilmaz E, Yilmaz O (2007) Synthesis, characterization and antibacterial activity of poly(N-vinyl imidazole) grafted chitosan. Carbohydr Poly 69:318–325. doi:10.1016/j.carbpol.2006.10.008

    Article  CAS  Google Scholar 

  15. Sabaa MW, Mohamed NA, Mohamed RR, Khalil NM, Abd El Latif SM (2010) Synthesis, characterization and antimicrobial activity of poly (N-vinyl imidazole) grafted carboxymethyl chitosan. Carbohydr Poly 79:998–1005. doi:10.1016/j.carbpol.2009.10.024

    Article  CAS  Google Scholar 

  16. Goy RC, Britto D, Assis OBG, Agropecuario EI, Carlos S (2009) A review of the antimicrobial activity of chitosan. Polimeros 19:241–247

    Article  CAS  Google Scholar 

  17. Peng ZX, Wang L, Du L, Guo SR, Wang XQ, Tang TT (2010) Adjustment of the antibacterial activity and biocompatibility of hydroxypropyltrimethyl ammonium chloride chitosan by varying the degree of substitution of quaternary ammonium. Carbohydr Poly 81:275–283. doi:10.1016/j.carbpol.2010.02.008

    Article  CAS  Google Scholar 

  18. Munoz-Bonilla A, Fernandez-Garcia M (2012) Polymeric materials with antimicrobial activity. Prog Polym Sci 37:281–339. doi:c10.1016.j.progpolymsci.2011.08.005

    Article  CAS  Google Scholar 

  19. Gorochovceva N, Makuska R (2004) Synthesis and study of water-soluble chitosan-O-poly(ethylene glycol) graft copolymers. Eur Poly J 40:685–691. doi:10.1016/j.eurpolymj.2003.12.005

    Article  CAS  Google Scholar 

  20. Liu L, Wang Y, Shen X, Fang Y (2005) Preparation of chitosan-g-polycaprolactone copolymers through ring-opening polymerization of epsilon-caprolactone onto phthaloyl-protectedchitosan. Biopolymers 78:163–170. doi:10.1002/bip.20261

    Article  CAS  Google Scholar 

  21. Jenkins D, Hudson SM (2001) Review of vinyl graft copolymerization featuring recent advances toward controlled radical-based reactions and illustrated with chitin/chitosan trunk polymers. Chem Rev 101:3245–3273. doi:10.1021/cr0002571

    Article  CAS  Google Scholar 

  22. Sarac AS (1999) Redox polymerization. Prog Polym Sci 24:1149–1204. doi:10.1016/S0079-6700(99)00026-X

    Article  CAS  Google Scholar 

  23. Yilmaz E, Adali T, Yilmaz O, Bengisu M (2007) Grafting of poly(triethylene glycol dimethacrylate) onto chitosan by ceric ion initiation. React Funct Polym 67:10–18. doi:10.1016j.reactfunctpolym2006.08.003

    Article  CAS  Google Scholar 

  24. Sonia TA, Sharma CP (2011) In vitro evaluation of N-(2-hydroxy) propyl-3-trimethyl ammonium chitosan for oral insulin delivery. Carbohydr Poly 84:103–109. doi:10.1016/j.carbpol.2010.10.070

    Article  CAS  Google Scholar 

  25. Signini R, Campana Filho SP (2001) Characteristics and properties of purified chitosan in the neutral, acetate and hydrochloride forms. Polimeros 11:58–64

    Article  CAS  Google Scholar 

  26. Li Q, Dunn ET, Grandmaison EW, Goosen MFA (1997) Applications and properties of chitosan, edited by Goosen MFA. Technomic Publishing Company, Lancaster, pp 3–29

    Google Scholar 

  27. Martinez-Camacho AP, Cortez-Rocha MO, Castillo-Ortega MM, Burgos-Hernandez A, Ezquerra-Brauer JM, Plascencia-Jatomera M (2011) Antimicrobial activity of chitosan nanofibers obtained by electrospinning. Polym Int 60:1663–1669. doi:10.1002pi.3174

    Article  CAS  Google Scholar 

  28. Tan JS, Sochor AR (1981) Chain characteristics and counterion binding of poly(N-vinylimidazole) and its protonated and quaternized salts. Macromolecules 14:1700–1706. doi:10.1021/ma50007a017

    Article  CAS  Google Scholar 

  29. Chen WY, Hsu CH, Huang JR, Tsai ML, Chen RH (2011) Effect of the ionic strength of the media on the aggregation behaviors of high molecule weight chitosan. J Polym Res 18:1385–1395. doi:10.1007/s10965-010-9543-9

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Yalinca.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yalinca, Z., Yilmaz, E., Taneri, B. et al. A comparative study on antibacterial activities of chitosan based products and their combinations with gentamicin against S. epidermidis and E. coli . Polym. Bull. 70, 3407–3423 (2013). https://doi.org/10.1007/s00289-013-1030-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-013-1030-0

Keywords

Navigation