Skip to main content
Log in

Control over crystalline form in polypropylene pipe via mandrel rotation extrusion

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In this paper, isotactic polypropylene pipes were prepared via mandrel rotation extrusion and the effects of mandrel rotation speed on crystalline form of Polypropylene (PP) pipes were investigated. The results indicated that properly high mandrel rotation speed could promote the growth of β crystal markedly in the inner surface of PP pipes, while too high mandrel rotation speed could induce the formation of α column crystal and suppress the formation of β crystal. However, only similar α spherulites appeared in the outer layer of PP pipes prepared by different mandrel rotation speed. This implied there should be different key factors impacting the crystalline form along thickness direction of PP pipes: for external layer, its “cooling rate controlled” and for internal layer, its “mandrel rotation speed controlled”. As a result, gradient crystalline structure was obtained by the compounding effects of cooling rate and mandrel rotation speed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Hametner C (1999) Polypropylene pipes for drinking water supply. J Macromol Sci Part A 36:1751–1758

    Google Scholar 

  2. Remias J (2009) Polypropylene Block Copolymers for Use in Sewage and Drainage International Polyolefin Conference 1:519–551

  3. Nie M, Bai SB, Wang Q (2010) High-density polyethylene pipe with high resistance to slow crack growth prepared via rotation extrusion. Polym Bull 65:609–621

    Article  CAS  Google Scholar 

  4. Lu XC, Qian R, Brown N, Buczala G (1992) The effect of pressure and contaminants on slow crack growth in a butt fusion in a polyethylene gas pipe. J Appl Polym Sci 46(8):1417–1427

    Google Scholar 

  5. Zheng G, Jia Z, Li S, Dai K, Liu B, Zhang X, Mi L, Liu C, Chen J, Shen C, Peng X, Li Q (2011) Oriented structure in stretched isotactic polypropylene melt and its unexpected recrystallization: optical and X-ray studies. Polym Int 60:1434–1441

    Article  CAS  Google Scholar 

  6. Zhong G-J, Li Z-M, Li L-B, Mendes E (2007) Crystalline morphology of isotactic polypropylene (iPP) in injection molded poly(ethylene terephthalate) (PET)/iPP microfibrillar blends. Polymer 48:1729–1740

    Article  CAS  Google Scholar 

  7. Martin J, Margueron S, Fontana M, Cochez M, Bourson P (2010) Study of the molecular orientation heterogeneity in polypropylene injection-molded parts by Raman spectroscopy. Polym Eng Sci 50:138–143

    Article  CAS  Google Scholar 

  8. Samuels RJ, Yee RY (1972) Characterization of the structure and organization of β-form crystals in type III and type IV isotactic polypropylene spherulites. J Polym Sci Part A 2 Polym Phys 10:385–432

    Article  CAS  Google Scholar 

  9. Bruckner S, Meille SV (1989) Non-parallel chains in crystalline γ-isotactic polypropylene. Nature 340:455–457

    Article  CAS  Google Scholar 

  10. Natta G, Corradini P (1960) Structure and Properties oI Isotactic Polypropylene. Il Nuovo Cimento 15:40–51

    Article  CAS  Google Scholar 

  11. Wu CM, Chen M, Karger-Kocsis J (1999) The role of metastability in the micromorphologic features of sheared isotactic polypropylene melts. Polymer 40:4195–4203

    Article  CAS  Google Scholar 

  12. Wenig W, Herzog F (1993) Injection molding of polypropylene: X-ray investigation of the skin–core morphology. J Appl Polym Sci 50:2163–2171

    Article  CAS  Google Scholar 

  13. Leuuerin HJ, Kirsc G (1973) Beeinflussung der Kristallstruktur von isotaktischem Polypropylen durch Kristallisation aus orientierten Schmelzen. Die Angewandte Makromolekulare Chemie 33:17–23

    Article  Google Scholar 

  14. Varga J, Karger-Kocsis J (1993) Direct evidence of row-nucleated cylindritic crystallization in glass fiber-reinforced polypropylene composites. Polym Bull 30:105–110

    Article  CAS  Google Scholar 

  15. Somani RH, Hsiao BS, Nogales A (2001) Structure development during shear flow induced crystallization of i-PP: in situ wide-angle X-ray diffraction study. Macromolecules 34:5902–5909

    Article  CAS  Google Scholar 

  16. Su R, Zhang Z, Gao X, Ge Y, Wang K, Fu Q (2010) Polypropylene injection molded part with novel macroscopic bamboo-like bionic structure. J Phys Chem B 114:9994–10001

    Article  CAS  Google Scholar 

  17. Bunget C, Ngaile G (2011) Influence of ultrasonic vibration on micro-extrusion. Ultrasonics 51:606–616

    Article  CAS  Google Scholar 

  18. Qu J, Qin X, Cao X, Jin G (2006) Effect of vibrating extrusion on the structure and mechanical properties of isotactic polypropylene. Polym Plast Technol Eng 45:1065–1071

    Article  CAS  Google Scholar 

  19. Zheng G-Q, Yang W, Yang MB, Chen JB, Li Q, Shen CY (2008) Gas-assisted injection molded polypropylene: the skin-core structure. Polym Eng Sci 48:976–986

    Article  CAS  Google Scholar 

  20. Chen LM, Shen K (2000) Biaxial self-reinforcement of isotactic polypropylene prepared in uniaxial oscillating stress field by injection molding. II. Morphology. J App Polym Sci 78:1911–1917

    Article  CAS  Google Scholar 

  21. Li Y, Zhan J, Deng M, Huang H, Shen K (2006) Self-toughening and self-reinforcing injection-molded isotactic polypropylene via midfrequency vibration field. J Macromol Sci Part B Phys 45:911–922

    Article  CAS  Google Scholar 

  22. Guo Y, Wang Q, Bai SB (2010) The effect of rotational extrusion on the structure and properties of HDPE pipes. Polym Plast Technol Eng 49:908–915

    Article  CAS  Google Scholar 

  23. A Turner Jones, Aizlewood JM, Beckett DR (1963) Crystalline Forms of Isotactic Polypropylene. Macromol Chem 75:134–158

    Google Scholar 

  24. Park Jemyung, Eom Kyuyoung, Kwon O, Woo S (2001) Chemical etching technique for the investigation of melt-crystallized isotactic polypropylene spherulite and lamellar morphology by scanning electron microscopy. Microsc Microanal 7:276–286

    Article  CAS  Google Scholar 

  25. Varga J (1992) Supermolecular structure of isotactic polypropylene. J Mater Sci 27:2557–2579

    Article  CAS  Google Scholar 

  26. Jacoby P, Bersted BH, Kissel WJ, Smith CE (1986) Studies on the beta crystalline form of isotactic polypropylene. J Polym Sci Part B: Polym Phys 24:461–491

    Article  CAS  Google Scholar 

  27. Varga J (2002) β-modification of isotactic polypropylene: preparation, structure, processing, properties, and application. J Macromol Sci Part B 41:1121–1171

    Article  Google Scholar 

  28. Lotz B, Fillon B, Thierry A, Wittmann JC (1991) Low Tc growth transitions in isotactic polypropylene: beta to alpha and alpha to smectic phases. Polym Bull 25:101–105

    CAS  Google Scholar 

  29. Zhou Q, Liu F, Guo C, Fu Q, Shen K, Zhang J (2011) Shish–kebab-like cylindrulite structures resulted from periodical shear-induced crystallization of isotactic polypropylene. Polymer 52:2970–2978

    Article  CAS  Google Scholar 

  30. Nogalesa A, Hsiaoa BS, Somania RH, Srinivasc S, Tsouc AH, Balta-Callejab FJ, Ezquerrab TA (2001) Shear-induced crystallization of isotactic polypropylene with different molecular weight distributions: in situ small- and wide-angle X-ray scattering studies. Polymer 42:5247–5256

    Article  Google Scholar 

  31. Farah M, Bretas RES (2004) Characterization of i-PP shear-induced crystallization layers developed in a slit die. J Appl Polym Sci 91:3528–3541

    Article  CAS  Google Scholar 

  32. Zhang B, Chen J, Zhang X, Shen C (2011) Crystal morphology and structure of the β-form of isotactic polypropylene under supercooled extrusion. J Appl Polym Sci 120:3255–3264

    Article  CAS  Google Scholar 

  33. Dragaun H, Hubeny H, Muschik H (1977) Shear-induced β-Form crystallization in isotactic polypropylene. J Polym Sci Polym Phys Edn 15:1779–1789

    Article  CAS  Google Scholar 

  34. An H, Li X, Geng Y, Wang Y, Wang X, Li L, Li Z, Yang C (2008) Shear-induced conformational ordering, relaxation, and crystallization of isotactic polypropylene. J Phys Chem B 112:12256–12262

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors greatly acknowledge the financial support of the National Nature Science Foundation of China (51127003 and 51121001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, R., Nie, M., Bai, S. et al. Control over crystalline form in polypropylene pipe via mandrel rotation extrusion. Polym. Bull. 70, 2083–2096 (2013). https://doi.org/10.1007/s00289-013-0963-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-013-0963-7

Keywords

Navigation