Skip to main content
Log in

Antimicrobial P(HEMA/IA)/PVP semi-interpenetrating network hydrogels

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

New semi-interpenetrating networks (semi-IPNHs) (P(HEMA/IA)/PVP) were prepared by free radical crosslinking copolymerization of 2-hydroxyethyl methacrylate (HEMA) and itaconic acid (IA, 5 mol%), in the presence of poly(vinyl pyrrolidone) (PVP, 2, 5, and 10 mol%), as an interpenetrating agent. The structure of the semi-IPNHs was confirmed by Fourier transform infrared spectroscopy, and morphology study was performed by scanning electron microscopy, which revealed the characteristic porous morphology. The results obtained by dynamic mechanical analysis showed the improvement of mechanical properties with increasing PVP content in semi-IPNs. The maximum swelling was observed for all studied systems at a slightly acidic media (around pH 6), so it can be said that the content of PVP has no influence on the swelling behavior, in the PVP range investigated. Along with the pH sensitivity, which was expected due to the presence of IA, semi-IPNHs showed temperature-sensitive swelling properties, with the lower critical solution temperature value around 41 °C, which is in the physiologically interesting interval. The antimicrobial activity of the samples was tested using E. coli, S. aureus, and C. albicans pathogens. It was noticed that the antimicrobial potential depends on type of microbes, time of exposure, and PVP content in the samples. Due to their good antimicrobial and mechanical properties these stimuli-sensitive semi-IPNHs have potential to be used as biomaterials for the applications in medicine and pharmacy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ratner BD, Hoffman AS, Schoen FJ, Lemons JE (2004) Biomaterials science: an introduction to materials in medicine. Elsevier Academic Press, Boston

    Google Scholar 

  2. Kopecek J, Yang J (2007) Hydrogels as smart materials. Polym Int 56:1078–1098

    Article  CAS  Google Scholar 

  3. Slaughter B, Khurshid S, Fisher OZ, Khademhosseini A, Peppas NA (2009) Hydrogels in regenerative medicine. Adv Mater 21:3307–3329

    Article  CAS  Google Scholar 

  4. Sheena A, Sean B, Kazuhiko I, Anthony GE (2005) Molecularly engineered hydrogels for implant biocompatibility. Biomaterials 26:4767–4778

    Article  Google Scholar 

  5. Peppas NA, Hilt JZ, Khademhosseini A, Langer R (2006) Hydrogels in biology and medicine: from fundamentals to bionanotechnology. Adv Mate 18:1345–1360

    Article  CAS  Google Scholar 

  6. Sperling LH (1981) Interpenetrating polymer networks and related materials. Plenum, New York

    Book  Google Scholar 

  7. Vilas A, Sachin R (2000) Transparent semi- and full-IPNHs based on uralkylpolymethyl methacrylate. Phys Chem 2:1249–1254

    Google Scholar 

  8. Diez-Pena E, Quija-Garido I, Frutos P (2002) Thermal properties of crosslinked poly(N-isopropylacrylamide) [P(NIPAAm)], poly(methacrylic acid) [P(MAA)], their random copolymers [P(NIPAAm-co-MAA)] and sequential IPNs. Macromolecules 35:2667–2675

    Article  CAS  Google Scholar 

  9. Ma J, Xu Y, Fan B, Liang B (2007) Preparation and characterization of sodium carboxymethylcellulose/poly(N-isopropylacrylamide)/clay semi-IPN nanocomposite hydrogels. Eur Polym J 43:2221–2228

    Article  CAS  Google Scholar 

  10. Yin L, Fei L, Cui F, Tang C, Yin C (2007) Superporous hydrogels containing poly(acrylic acid-co-acrylamide)/O-carboxymethyl chitosan interpenetrating polymer networks. Biomaterials 28:1258–1266

    Article  CAS  Google Scholar 

  11. Myung D, Koh W, Hu J, Carrasco M, Noolandi J, Ta CN, Frank CW (2007) Biomimetic strain hardening in interpenetrating polymer network hydrogels. Polymer 48:5376–5387

    Article  CAS  Google Scholar 

  12. Moura MR, Guilherme MR, Campese GM, Radovanovic E, Rubira AF, Muniz EC (2005) Porous alginate-Ca2+ hydrogels interpenetrated with PNIPAAm networks: interrelationship between compressive stress and pore morphology. Eur Polym J 41:2845–2852

    Article  Google Scholar 

  13. Kim GM, Jo WH (2006) Synthesis and physical properties of pH-sensitive semi-IPN hydrogels based on poly(dimethylaminoethyl methacrylate-co-PEG dimethacrylate) and poly(acrylic acid). Fiber Polym 7:223–228

    Article  CAS  Google Scholar 

  14. Prasitsilp M, Siriwittayakorn T, Molloy R, Suebsanit N, Siriwittayakorn P, Veeranondha S (2003) Cytotoxicity study of homopolymers and copolymers of 2-hydroxyethyl methacrylate and some alkyl acrylates for potential use as temporary skin substitutes. J Mater Sci Mater Med 14:595–600

    Article  CAS  Google Scholar 

  15. Barrett GD, Constable IJ, Stewart AD (1986) Clinical results of hydrogel lens implantation. J Cataract Refract Surg 12:623–631

    CAS  Google Scholar 

  16. Menapace R, Skorpik C, Juchem M, Scheidel W, Schranz R (1989) Evaluation of the first 60 cases of poly HEMA posterior chamber lenses implanted in the sulcus. J Cataract Refract Surg 15:264–271

    CAS  Google Scholar 

  17. Tomić SLj, Suljovrujić EH, Filipović JM (2006) Biocompatible and bioadhesive hydrogels based on 2-hydroxyethyl methacrylate, monofunctional poly(alkylene glycol)s and itaconic acid. Polym Bull 57:691–702

    Article  Google Scholar 

  18. Jo S, Engel PS, Mikos AG (2000) Synthesis of poly(ethylene glycol)-tethered poly(propylene fumarate) and its modification with GRGD peptide. Polymer 41:7595–7604

    Article  CAS  Google Scholar 

  19. Vijayasekaran S, Chirila TV, Hong Y, Tahija SG, Dalton PD, Constable IJ, McAllister IL (1996) Poly(1-vinyl-2-pyrrolidinone) hydrogels as vitreous substitutes: histopathological evaluation in the animal eye. J Biomater Sci Polym Ed 7:685–696

    Article  CAS  Google Scholar 

  20. Faragalla MN, Hill DJT, Whittaker AK (2002) The copolymerization of N-vinyl-2-pyrrolidone with 2-hydroxyethyl methacrylate. Polym Bull 47:421–427

    Article  CAS  Google Scholar 

  21. Myung D, Waters D, Wiseman M, Duhamel PE, Noolandi J, Ta CN, Frank CW (2008) Progress in the development of interpenetrating polymer network hydrogels. Polym Adv Technol 19:647–657

    Article  CAS  Google Scholar 

  22. Bell CL, Peppas NA (1995) Measurement of the swelling force in ionic polymer networks. III. Swelling force of interpolymer complexes. J Control Release 37:277–280

    Article  CAS  Google Scholar 

  23. Peppas NA (1985) Analysis of Fickian and non-Fickian drug release from polymers. Pharm Acta Helv 60:110–111

    CAS  Google Scholar 

  24. Johnson BD, Niedermaier DJ, Crone WC, Moorthy J, Beebe DJ (2002) Mechanical properties of a ph sensitive hydrogel, session on biologically inspire synthesis and properties. In: Proceedings of the SEM Annual Conference on Experimental Mechanics, Milwaukee, WI

  25. D’Errico G, De Lellis M, Mangiapia G, Tedeschi A, Ortona O, Fusco S, Borzacchiello A, Ambrosio L (2008) Structural and mechanical properties of UV-photo-cross-linked poly(N-vinyl-2-pyrrolidone) hydrogels. Biomacromolecules 9:231–240

    Article  Google Scholar 

  26. Weast RC (ed) (1972) Handbook of chemistry and physics, 52nd edn. The Chemical Rubber Co., Cleveland, OH

    Google Scholar 

  27. Tomić SLj, Mićić MM, Filipović JM, Suljovrujić EH (2007) Swelling and drug release behavior of poly(2-hydroxyethyl methacrylate/itaconic acid) copolymeric hydrogels obtained by gamma irradiation. Radiat Phys Chem 76:801–810

    Article  Google Scholar 

  28. Tomić SLj, Mićić MM, Dobić SN, Filipović JM, Suljovrujić EH (2010) Smart poly(2-hydroxyethylmethacrylate/itaconic acid) hydrogels for biomedical application. Radiat Phys Chem 79:643–649

    Article  Google Scholar 

  29. Tomić SLj, Mićić MM, Filipović JM, Suljovrujić EH (2010) Synthesis, characterization and controlled release of cephalexin drug from smart poly(2-hydroxyethyl methacrylate/poly(alkylene glycol)(meth)acrylates hydrogels). Chem Eng J 160:801–809

    Article  Google Scholar 

  30. Jin SP, Liu MZ, Zhang F, Chen SL, Niu AZ (2006) Synthesis and characterization of pH-sensitivity semi-IPN hydrogel based on hydrogen bond between poly(N-vinylpyrrolidone) and poly(acrylic acid). Polymer 47:1526–1532

    Article  CAS  Google Scholar 

  31. Yu H, Xu X, Chen X, Lu T, Zhang P, Jing X (2007) Preparation and antibacterial effects of PVA–PVP hydrogels containing silver nanoparticles. J Appl Polym Sci 103(1):125–133

    Article  CAS  Google Scholar 

  32. Sawan SP, Manivannan G (1999) Antimicrobial/anti-infective materials: principles and applications. CRC Press, Lancaster

    Google Scholar 

  33. Martineau L, Shek PN (2006) Evaluation of a bi-layer wound dressing for burn care. Burns 32:172–179

    Article  Google Scholar 

  34. Houghton PJ, Hylands PJ, Mensah AY, Hensel A, Deters AM (2005) In vitro tests and ethnopharmacological investigations: wound healing as an example. J Ethnopharmacol 100:100–107

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study has been supported by the Ministry for Education and Science of the Republic of Serbia (Grant Nos. 172026 and 172062).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simonida Lj. Tomić.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krezović, B.D., Dimitrijević, S.I., Filipović, J.M. et al. Antimicrobial P(HEMA/IA)/PVP semi-interpenetrating network hydrogels. Polym. Bull. 70, 809–819 (2013). https://doi.org/10.1007/s00289-012-0830-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-012-0830-y

Keywords

Navigation