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Abstract
One of the most important issues in the critical assessment of spatio-temporal stochas-
tic models for epidemics is the selection of the transmission kernel used to represent
the relationship between infectious challenge and spatial separation of infected and
susceptible hosts. As the design of control strategies is often based on an assessment
of the distance over which transmission can realistically occur and estimation of this
distance is very sensitive to the choice of kernel function, it is important that mod-
els used to inform control strategies can be scrutinised in the light of observation in
order to elicit possible evidence against the selected kernel function. While a range
of approaches to model criticism is in existence, the field remains one in which the
need for further research is recognised. In this paper, building on earlier contribu-
tions by the authors, we introduce a new approach to assessing the validity of spatial
kernels—the latent likelihood ratio tests—which use likelihood-based discrepancy
variables that can be used to compare the fit of competing models, and compare the
capacity of this approach to detect model mis-specification with that of tests based on
the use of infection-link residuals. We demonstrate that the new approach can be used
to formulate tests with greater power than infection-link residuals to detect kernel
mis-specification particularly when the degree of mis-specification is modest. This
new tests avoid the use of a fully Bayesian approach which may introduce undesirable
complications related to computational complexity and prior sensitivity.
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1 Introduction

Selection of spatial kernel functions in spatio-temporal epidemic models is a question
of paramount practical importance. It is recognised (Shaw and Royle 1993; Gibson
andAustin 1996) that predictions regarding the speed of epidemic spread or propensity
for transmission over long distances are very sensitive to the choice of spatial kernel
function. The control of epidemics such as foot and mouth disease (FMD) in the UK
(Keeling 2001; Bates 2016; Chis Ster et al. 2009; Ferguson 2001; Ferguson et al.
2001; Jewell et al. 2009; Morris et al. 2001; BBC News 2011; Ster and Ferguson
2007; Streftaris and Gibson 2004a; Tildesley et al. 2008) or citrus canker in the USA
(Neri et al. 2014; Gottwald et al. 2002a, b) has proved controversial on account of the
removal of healthy hosts as part of the strategy. Such strategies have been informed
by mathematical models in which the choice of spatial kernel has been a factor in
determining a ‘culling radius’ (for example Keeling 2001; Ferguson 2001). Methods
for model criticism and comparison are therefore much-needed to ensure that, as far
as possible, such decisions can be supported and defended in the light of available
evidence.

Although several approaches to model criticism for epidemic models exist, in the
epidemic context many of these suffer from certain difficulties which motivate the
development of further approaches. In Gibson et al. (2018) the approaches commonly
used are reviewed. These range from Bayes factors and Bayesian model selection,
posterior predictive p values and latent classical tests, and the use of the deviance
information criterion (DIC) (Spiegelhalter et al. 2002, 2014) including missing data
variants (Celeux et al. 2006). To summarise some findings from the paper: issues with
model assessment for stochastic spatio-temporal epidemic models essentially arise
primarily because exact infection times cannot be directly observed (due to latent
period of the infection, delay in reporting etc.). These infection times are governed
by the spatial transmission kernel, which is often the aspect of model fit with which
modellers are primarily concerned.

As a result, Bayes factors and Bayes model selection suffer from prior sensitivity,
as well as difficulty in devising appropriate algorithms. In addition, the DIC has an
infinite number of possibilities in the missing data scenario (Celeux et al. 2006), each
all yielding model rankings that differ from each other. The latent classical testing
approach does not suffer from these drawbacks.

One recommendation from Gibson et al. (2018) is that it is prudent to follow
the advice of Box (1976) that one should test selectively for those forms of mis-
specification which are most strongly suspected and to design specific tests for this
purpose. This is the approach that is taken throughout this paper where we will for-
mulate latent likelihood ratio-tests (Streftaris and Gibson 2004a, 2012) for kernel
mis-specification and compare their sensitivity with that of the infection-link resid-
uals test introduced in Lau et al. (2014). Both of these methods lie within the field
of posterior predictive checking and latent classical testing approaches (Meng 1994;
Gelman 2013; Gelman et al. 1996) which fuse Bayesian and classical thinking by
having a Bayesian observer impute the result of a classical goodness-of-fit test applied
to a latent process, where the process and the test can be specified flexibly to max-
imise the chance of detecting the suspectedmis-specification, should it be present. The
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approach differs from a purely Bayesian one, in which modes of mis-specification are
accommodated through the process of Bayesian model expansion Draper (1995),
the representation of several competing models within an expanded model where
each model has an index. Bayesian reasoning is then used to compare models via
the posterior distribution of the model index. One reason for not adopting this latter
approach is that inference for relatively simple epidemic models using partial obser-
vation is already a complex process. We therefore seek model comparison methods
that can be utilised without increasing the dimension of the models to which Bayesian
methods are applied. Accordingly, the methods we present can be integrated into
analyses without increasing the complexity of the fundamental Bayesian computa-
tions.

We will consider stochastic models for an infectious disease spreading through
a closed population of spatially-distributed hosts exemplified by the spatio-temporal
Susceptible-Exposed-Infectious-Removed (SEIR) model. It will be assumed that the
locations of hosts are known and fixed. Under this model, the host population at time
t is partitioned into subsets S(t), E(t), I (t) and R(t). Hosts in S(.) are suscepti-
ble to infection, hosts in E(.) have been infected but are not yet able to transmit,
hosts in I (.) can pass on infection, while hosts in R(t) have been removed (e.g. by
death, hospitalisation, or the acquisition of immunity) and play no further part in the
epidemic. A susceptible individual at coordinates x at time t becomes exposed with
probability:

Pr(Individual becomes exposed during [t, t + dt]) = C(t) dt + o(dt) (1)

where,
C(t) = α + β

∑

y∈I (t)
K (κ, x, y) (2)

where I (t) comprises sites infectious at time t , α and β are primary and secondary
infection rates, and κ parametrises the spatial kernel function K (). For conve-
nience, we identify hosts with their location. The choice of K greatly influences
the design of control strategies, for example based on ring-culling. A longer-tailed
kernel may suggest the use of a larger culling radius and vice versa. Sojourn
times in the E and I class are modelled using appropriate distributions such as
Gamma or Weibull distributions. We will denote by θ the vector of model param-
eters formed from α, β, κ supplemented by parameters specifying the distributions
of sojourn times in E and I . This flexible framework can accommodate complex-
ity arising e.g. from host heterogeneity (differences between hosts that affect their
susceptibility and/or infectivity) as appropriate (Parry et al. 2014; Jewell et al.
2009).

When data y contain partial information (e.g. removals or ‘snapshots’ of I (t) at
discrete times using imperfect diagnostic tests) data-augmented Bayesian analysis
is now a standard tool for investigating π(θ |y) via π(θ, z|y), where z incorporates
unobserved transitions and, possibly, graphs of infectious contacts. Computations are
often effected using reversible-jump MCMC or particle filtering (King et al. 2008).
In this paper, we will assume that observations include times and locations of all
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transitions from E to I and from I to R, so that the subsets I (t) and R(t) are observed
but individuals in S(t) cannot be distinguished from those in E(t). Such data which
can be modelled by an SEIR model are encountered in many real-world situations, for
example, concerning diseases with long latent periods or because of delay in reporting
of cases, such as Foot-and-Mouth Disease (Keeling 2001; Jewell et al. 2009; Chis Ster
et al. 2009; Ferguson 2001; Ferguson et al. 2001; Jewell et al. 2009;Morris et al. 2001;
Ster and Ferguson 2007; Streftaris and Gibson 2004a; Tildesley et al. 2008) and Citrus
Canker (Neri et al. 2014; Gottwald et al. 2002a, b). In many such datasets, the situation
does arise where the times of infectiousness and removal are observed, but not the time
of exposure, for example, in diseases where infectivity occurs only after the onset of
symptoms, for example smallpox and avian influenza (Rorres et al. 2011; Stockdale
et al. 2017; Boys and Giles 2007), or in insect or plant infestations (Brown et al. 2013;
Lau et al. 2014), where the invading species has to reach a certain phase of its life
cycle before producing eggs/seeds/spores. We therefore specify z to incorporate the
times and location of the unobserved transitions from S to E (termed exposure events)
and use MCMC to sample from π(θ, z|y). As the number of exposure events is not
uniquely determined by the data, the state-space for (θ, z) comprises components of
varying dimension requiring the use of reversible-jump methods. It is straightforward
to apply the methods used on this class of models, to snapshot data or other forms of
partial observation.

The rest of the paper is organised as follows. In Sect. 2, we discuss the general fea-
tures of the posterior-predictive, latent classical testing framework before describing
how functional-model representations of epidemic models have been used in the spec-
ification of infection-link residuals (ILR) Lau et al. (2014). In Sect. 3, we explicitly
formulate new latent classical tests for detecting kernel mis-specification using likeli-
hood ratios, where the ratio is based on a complete or partial parameter likelihood. In
Sect. 4, we apply the tests to simulated data comparing the ability or ‘power’ of the
likelihood-based and infection-link residual tests to detect kernel mis-specification in
several scenarios. Conclusions are summarised in Sect. 5.

2 Posterior predictive checks and latent classical tests

Themodel assessmentmethods utilised here have their roots in the calibrated Bayesian
approach promoted by several authors in which parameter estimation is achieved using
Bayesian reasoning and model assessment draws from classical approaches applied
to posterior predictive distributions of outcomes (Guttman 1967; Rubin 1981, 1984).
Throughout we consider the situation where a Bayesian observer B observes the
outcome y of an experiment with proposed statistical model π0(y|θ) where beliefs
regarding the parameter vector θ are represented by the prior distribution π0(θ). We
suppose that the likelihood π0(y|θ) may not necessarily be tractable—a situation
which typically applies in the case of a partially observed epidemics and which com-
plicates investigation of the posterior density π0(θ |y).

Meng (1994) proposed the use of posterior predictive P-values as a means of model
assessment, this being the posterior probability that some test statistic T (yrep) from
a replicate experiment, yielding data yrep, independent (given θ ) of the one observed,
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exceeds the observed value T (y). Mathematically, this Bayesian P-value is given by
the integral

p(y) = P(T (yrep) > T (y)|y)
=

∫
P

(
T (yrep) > T (y)|θ)

π0(θ |y)dθ

The idea is extended in Meng (1994), Gelman et al. (1996) to include test statistics T
that are functions of the parameters, known as discrepancy variables, to give the more
general formulation

p(y) =
∫

P
(
T (yrep, θ) > T (y, θ)|θ)

π0(θ |y)dx dθ

Themethods thatwe propose are based on these ideas.Wehighlight threemain features
of the approach as applied here.

– WritingPr (T (yrep, θ) > T (y, θ)|θ) = p(y, θ),we canwrite p(y) = E (p(y, θ))|y).
In the case where T (y, θ) follows a continuous distribution with respect to y the
prior distribution of p(y, θ) is distributed asU (0, 1). The laws of conditional vari-
ance force the prior distribution of p(y) under the assumed model to be typically
less variable that a U (0, 1) (Meng 1994). Therefore, we tend to view p(y, θ) as
the P-value of interest, as its prior distribution matches the sampling distribution
of a P-value in the classical setting, with the usual p(y) being its posterior expec-
tation. In this framework, evidence against the model may be expressed as the
posterior probability that p(y, θ) falls below some value; of course, the posterior
expectation of p(y, θ) provides a further natural summary measure that we utilise.

– Wemake use of discrepency variables that are functions of latent processes. Specif-
ically let r be a process varying jointly with y according to the model π(y, r |θ)

for which the marginal model π(y|θ) coincides with π0(y|θ). Then we can assess
the model π0(y|θ) by considering the posterior distribution of P-value based on a
discrepency variable T (r , θ) or T (r , y, θ). As discussed in Gibson et al. (2018), in
this framework we can consider the Bayesian B to be imputing the P-value from
test of the model π(r |θ) carried out by a classical observer C with knowledge
of r and θ . The above approach is natural in the setting of epidemic modelling,
discussed in the previous section, where data-augmentation may require unob-
served exposure events to be imputed when sampling from π(θ, z|y). One issue
that arises with the use of latent, imputed processes in this way is that the result of
the latent testmay be dominated by the data imputed using themodel—particularly
if imputation is extensive. See Gelman (2013) for an example of this phenomenon
involving the Normal distribution and Streftaris and Gibson (2012) for an example
in the epidemic setting. While it may be attractive to base discrepency variables
on latent processes in order to specify tests that may be analytically tractable, or
powerful in the classical sense as in the case of the likelihood-ratio tests considered
in the next section, one should be mindful of the tendency of the imputed data to
reinforce the model being tested.
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– Suppose thatπ j (y, r j |θ), j = 1, ..., k representmodels for the joint distribution of
(y, r j ) all of which specify the samemarginalmodel π0(y|θ) and share a common
parameter prior distribution π(θ). Observation of y alone carries no information
on the relative validity of thesemodels. That is, y carries exactly the same evidence
against every model with marginal π0(y|θ). Therefore, if we wish, we can design
the latent process r to yield a test that is particularly sensitive to a suspected form
of model mis-specification. This facility is exploited in the case of infection-link
residuals discussed later.

When the latent process r has a fixed distribution that does not depend on θ we may
consider r to play the role of a residual process and the latent P-value can be obtained
via a test of the fit of the imputed r to this process. In Gibson et al. (2006) epidemic
models were tested using this approachwhere r was a set of imputed Sellke thresholds,
distributed as independent draws fromExp(1)under the assumedmodel. The infection-
link residuals, used to test spatial kernels in Lau et al. (2014), and considered further
in this paper provide a further example.

2.1 Infection-link residuals

The starting point is to construct a functional-model representation of the epidemic
process. In this formalism the observations y are represented as a deterministic function
x = h(r , θ) of θ and some unobserved process r with fixed distribution independent of
θ , where x = (y, z). This means that r can be treated as a residual process and tests for
compliance with the specified distribution can be applied to the imputed realisations
of r . Such an approach fits well for epidemic models where sampling from π(θ, r |y)
is often possible using Markov chain Monte Carlo methods.

In Lau et al. (2014) a functional-model for a spatio-temporal SEIR model is pre-
sentedwhere the process r is composed of four independent i.i.d. Unif(0, 1) sequences,
r1, r2, r3, r4. Consider the mapping x = hθ (r1, r2, r3, r4), where x records the time
and nature of every event occurring during the epidemic. Details can be found in Lau
et al. (2014). The time of each subsequent infection event is determined from the pro-
cess r1 = {r1 j , j ≥ 1} while processes r3 and r4 specify the quantiles of the sojourn
periods in the E and I class respectively for each infection. The infection-link residual
sequence (to which tests are applied) r2 = {r2 j , j ≥ 1} determine the particular I -S
pair responsible for each infection event. Given the time of the j th infection, t j , we
identify the set of I -S links

S = {K (x, y, κ)|x ∈ S(t j ), y ∈ I (t j )}

andorder these according to ascendingorder ofmagnitudeof K (x, y, κ). Theparticular
link causing the j th infection is selected by considering the cumulative sum of the
ordered links and identifying the first linkwhere this cumulative sum exceeds the value
r2 jW whereW denotes the sum of the weights in S. It is straightforward to explore the
joint posteriorπ(θ, r1, r2, r3, r4|y). If the kernel function K has beenmisspecified (for
example by underestimating the propensity for long-range transmission by assuming
an exponentially bounded form when a power-law relation is more appropriate), then
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when the process r2 is imputed, some systematic deviation from a U (0, 1) should be
anticipated. In Lau et al. (2014) p-values were imputed from an Anderson-Darling test
(Anderson and Darling 1954) applied to r2 and it was demonstrated that the approach
can detect kernel mis-specification in simulated data sets. In this paper we investigate
whether it is possible to improve on the sensitivity of the ILR tests using likelihood-
based methods.

3 Latent likelihood ratio tests for model comparison

The general approach of embedding likelihood ratio tests has been followed previously
in the epidemic setting in Streftaris and Gibson (2004a) where results of an ANOVA
test applied to viraemicmeasurements taken on a host population, partitioned by depth
in an unobserved infection graph, were imputed. It is also used in Streftaris andGibson
(2012) to compare threshold models for tolerance to infection. While the ILR test is
targeted at generic forms of model inadequacy (mis-specification of the tail properties
of a spatial kernel), latent likelihood ratio tests demand that a specific alternativemodel
is identified and therefore provide a means of model comparison.

To testmodelM0 with likelihoodπ0(y|θ) against amodelM1 with parameter θ1 and
likelihood π1(y), it is natural for B (the Bayesian observer) to impute C ′s (the clas-
sical observer’s) conclusion from a generalised likelihood ratio test (LRT) using the
discrepancy variable T (y, θ) = π0(y|θ)

π1(y|θ̂1) where θ̂1 is the maximum likelihood estimate

(MLE) of the parameter θ1 in M1, calculated using the imputed augmented data. For
epidemic models and data, π(y|θ) and π1(y|θ1) would typically be intractable. Nev-
ertheless, B can impute (θ, z), where z represents an appropriate latent process, and
the conclusion ofC ′s test based on the generalised likelihood ratio T (x, θ) = π0(x |θ)

π1(x |θ̂1) ,
where x = (y, z), so long as π0(x |θ) and π1(x |θ1) are tractable. Note that T (x, θ)

is the ratio of likelihoods as calculated from augmented data, not the observed data.
We will therefore refer to π0(x |θ) and π1(x |θ) as the augmented data likelihood. This
can be interpreted as the likelihood that would be calculated by an observer of the
augmented data set.

Suppose that, givenpartial information y,weusedata-augmentedMCMCtoexplore
π0(θ, x |y), where x comprises the times and nature of all transitions within an obser-
vation window (0, Tmax ). The latent likelihood ratio test may be implemented as an
addendum to this analysis as follows.

1. B draws samples (θ, x) from π0(θ, x |y).
2. For each sample (θ(i), x (i)) B proceeds to:

– calculate the maximum likelihood estimate (MLE), θ̂ (i)
1 , of the parameter θ1,

under the alternative model,
– compute the ratio T (x (i), θ (i)) = π0(x (i)|θ(i))

π1(x (i)|θ̂ (i)
1 )

and the associated P-value

p(θ(i), x (i)) = Pr(T (x, θ(i)) < T (x (i), θ (i))|θ(i), x (i)),

where x is drawn randomly from π0(x |θ(i)).
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By repeating these steps within a standard MCMC analysis, a sample from
π(p(θ, x)|y) can be obtained.

Wedonot assumenesting ofmodels thatmight allowasymptotic results on sampling
distributions of likelihood ratios to be applied. For each sampled pair (θ(i), x (i)) we
may estimate the P-value by simulation. The simplest approach is to estimate the
posterior expectation of the P-values as follows:

– Compute the ratio T (x (i), θ (i)) = π0(x (i)|θ(i))

π1(x (i)|θ̂ (i)
1 )

. Simulate a random draw, x ′ from

π0(x |θ(i)), obtain the MLE, θ̂ ′
1, by maximising π1(x ′|θ1), and compute T ′ =

π0(x ′|θ)

π1(x ′|θ̂ ′
1)
.

An estimate of the posterior mean of π0(p(θ, x)|y), is obtained from the frequency
withwhichT ′ < T (x (i), θ (i)). This quantity provides some informationon the strength
of the evidence against the modelling assumptions. To investigate the full posterior
distribution of p(θ, x)we can drawmultiple independent x ′ for each θ(i) and compute
the proportion of these for which T ′ < T (x (i), θ (i)).

A major motivating factor for considering the latent process x is that π(x |θ) is
analytically tractable and a likelihood ratio test (generally agreed to be a powerful
approach to model comparison) can be implemented. This avoids the need to approx-
imate the observed data likelihood π(y|θ), for example using synthetic likelihoods
(for example, Wood 2010) or ideas from Approximate Bayesian Computation (for
example, McKinley et al. 2009; Csilléry et al. 2010; Sisson et al. 2018) (see discus-
sion). At the same time, the approach of using the imputed x may suffer from the issue
of reinforcement discussed earlier since x is imputed by conditioning on the model
being tested. In the appendix, we explore this phenomenon in the case of likelihood
ratio tests and the desirability of imputing as little information as possible beyond the
observations, y. For this reason, we will explore two forms of latent likelihood ratio
test which differ in terms of the amount of imputed information utilised.

3.1 Latent likelihood tests for kernel assessment

We now consider the situation where M0 and M1 denote epidemic models of the same
general form as described in Eq. 1 which differ only in the choice of spatial kernel
function K (d, κ). Bayesian B proposes an SEIR model for an emerging epidemic
of the form described in Sect. 1. The model, M0, incorporates a transmission kernel
K0(d, κ0) and a priorπ0(θ) is assigned to the parameter vector θ0 = (α, β, κ0, θE , θI ).
We consider two forms of latent likelihood test for kernel comparison.

3.1.1 Full-trajectory latent likelihood ratio test (LLRT)

This analysis is achieved through B investigating π0(θ0, x |y), where x is the com-
plete trajectory of the epidemic (the times of all exposure events and locations of the
exposure, infection and removal events not considering the infection tree). TheMCMC
algorithm used to do this is standard (for example, Gibson and Renshaw 1998; O’Neill
and Roberts 1999; Streftaris and Gibson 2004a, b; Forrester et al. 2006; Gibson et al.
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2006; Chis Ster et al. 2009; Starr et al. 2009; Neri et al. 2014) and is summarised in
Electronic Supplementary Material Appendix 1. For each sample (θ0, x), the MLE
θ̂1 is computed using the optimisation routine described in Electronic Supplementary
Material Appendix 2, and the algorithm is implemented as in Sect. 3. The test statistic
used is the augmented data likelihood ratio, as detailed in Step 2 in Sect. 3.

3.1.2 Partial LLRT

In this setting, Observer B investigates π0(θ0, x |y) but Observer C is provided only
with θ0 and z, where z incorporates for each exposure event, j :

– the sets of locations of susceptible and infectious individuals, S(t j−), I (t j−)

immediately prior to the time of the event, t j ;
– the location of the exposed individual, x j ∈ S(t j−).

The times or even the order of the exposure events are not included in z though some
restrictions on the latter will follow from z. Let G0(θ0, z) be defined by

G0(θ0, z) =
∏

j

α + β
∑

y∈I (t j−) K0(|y − x j |, κ0)
|S(t j−)|α + β

∑
y∈I (t j−),x∈S(t j−) K0(|y − x|, κ0)

where |S(t j−)| denotes the cardinality of S(t j−). An analogous partial likelihood for
M1 with kernel function K1 and parameter θ1 is given by

G1(θ1, z) =
∏

j

α + β
∑

y∈I (t j−) K1(|y − x j |, κ1)
|S(t j−)|α + β

∑
y∈I (t j−),x∈S(t j−) K1(|y − x|, κ1) .

Then, if θ̂1 maximises G1(θ1, z) we can define a partial likelihood ratio statistic

Tpartial(θ0, z) = G0(θ0, z)

G1(θ̂1, z)
.

This statistic is used in place of the augmented data likelihood ratio in Step 2 in Sect. 3.
The partial LLRT requires that only θ0 and z are imputed by B for its calculation.

Thus, the impact of reinforcement of M0 may be lessened. Moreover, if detection
of a possibly misspecified kernel is the goal, then Tpartial(θ0, z) is a statistic which
‘focuses’ on this aspect of the model. It is therefore possible that the partial LLRT,
at least in some circumstances, may be more effective in eliciting evidence of a mis-
specifiedkernel than the augmented data likelihoodLLRT. In theAppendix,we explore
the impact of reinforcement on the performance of the LLRT in terms of its power to
detect a mis-specified model and how this may vary with the amount of information
imputed. Moreover, the partial LLRT is a natural comparator for the ILR test used
in Lau et al. (2014), as, for both of these tests, (θ0, z) is necessary and sufficient for
computation of the test result.

In the next section we consider the ability of the ILR, and the two LLRTs to detect
mis-specification of the transmission kernel in a spatio-temporal epidemic model in a
simulation study.
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Table 1 Table of the parameters
used in the generation of the
simulated data-sets used in
Sect. 4

Parameter Data-set

Original α × 2 β × 2 κ × 2

α 0.001 0.002 0.001 0.001

β 3.000 3.000 6.000 3.000

κ 0.030 0.030 0.030 0.060

μE 5.000 5.000 5.000 5.000

σ 2
E 2.500 2.500 2.500 2.500

μI 1.772 1.772 1.772 1.772

σ 2
I 0.858 0.858 0.858 0.858

4 Simulation study

In keeping with the assumptions of Lau et al. (2014), we assume that the observations
y record the transitions from E to I and from I to R, but that exposure events are
not recorded. Analogous data have been encountered in many real-world situations,
for example in diseases where infectivity occurs only after the onset of symptoms,
for example smallpox and avian influenza (Rorres et al. 2011; Stockdale et al. 2017;
Boys and Giles 2007), or in insect or plant infestations (Brown et al. 2013; Lau et al.
2014), where the invading species has to reach a certain phase of its life cycle before
producing eggs/seeds/spores which are laid on other hosts. Epidemics are simulated
in an initially totally susceptible population of 1000 hosts uniformly distributed over
a square region of size 2000 × 2000 units. Both primary and secondary infection are
present and an exponentially decaying spatial kernel function of the form

K (κ, x, y) = exp(−κ|x − y|)

is assumed,where x and y denote the positions of two hosts.We assume that the sojourn
times in the E and I classes follow Gamma distributions with means and variances
μE , μI and σ 2

E , σ 2
I respectively. Table 1 lists the parameter values used to simulate

the data. These parameters are based on those used in the simulation study of the
ILR test in Lau et al. (2014), to allow comparison with the simulation study therein.
Starting from an entirely susceptible population, the epidemic is simulated until a
fixed percentage of the population (100%, 40% or 70%) was observed as infected.
Four different parameter sets are used—a baseline scenario, and the same parameter
set with α, β and κ respectively increased to twice the baseline value. The baseline
set of parameter values, and the modified values, are given in Table 1.

For each simulated epidemic, each test was applied using 3 different observation
windows corresponding to the intervals up to which 100%, 70% or 40% of the pop-
ulation was observed to be infected. The likelihood-based tests as implemented only
allow for estimation of the posterior expectation of an imputed p-value, and we there-
fore use the posterior expectation as the summary measure of evidence for all the tests
(even though the full posterior can be explored for the ILR test).
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To each simulated data set y we fit two separate misspecified models with isotropic
kernel functions:

K (κ, x, y) = (1 + |x − y|κ)−1;
K (κ, x, y) = exp(−κ|x − y|2).

In the former case, infective challenge decreases according to a power-law, while
in the latter case the Gaussian kernel is exponentially bounded. Informally, we may
consider the first kernel to represent a more severe degree of mis-specification, in
comparison to the real exponential kernel, than the second one.Wemay anticipate that
tests should find more evidence against the assumptions when the power-law kernel
is fitted. The fitted model, whose adequacy is to be tested, will be referred to as M0.
The main distinction between spatial transmission kernels is whether or not they are
exponentially bounded (Gibson and Austin 1996; Shaw 1995). In this paper, we have
selected two kernels that deliberately misfit data generated from a known exponential
kernel: a Gaussian kernel, and a long-tailed power law kernel. The Gaussian kernel is
exponentially bounded, whilst the power-law kernel is not.

The simulated data are generated in all data-sets from an exponential kernel. This
model is referred to as M1, and will be the model that M0 is compared against in the
LLR tests. This exponential kernel is given by:

K (κ, x, y) = exp(−κ|x − y|).

In all cases we use non-informative prior distributions for the parameters in the
fitted model as follows: A Unif(0, M) uniform prior was used for α,μE , σ 2

E , μI , σ
2
I ,

where M ≈ 1.7 × 10308 is the computer limit for double precision floating-point
numbers in C++.

The prior distributions used for the other parameters were:

β ∼ Gamma(μ = 1, σ 2 = 100)

κ ∼ Gamma(μ = 1, σ 2 = 100)

The results of the simulation study are presented in Table 2 and in Fig. 1. Some obvious
trends can be seen.

– The ILR based test consistently finds very strong evidence against the model when
the power-law kernel is wrongly fitted. However, no evidence emerges when the
exponentially bounded, Gaussian kernel is fitted to the observations, with themean
p-value being close to 0.5. This suggests that the ILR testmay be insensitive tomis-
specification if the degree of discrepancy is modest. When the data are simulated
using the larger value of κ (so that secondary infection tends to occur over short
range) and the power-law kernel is fitted, the evidence against the assumptions
is strongest when only 40% of the hosts are infected. This may be due to the
short-range secondary infection being most apparent during the early stages of
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Table 2 Comparison of Latent Likelihood Ratio (LLR) test to Infection Link Residuals test: data-set,
M0 tested and estimated expected p-values from the infection link residuals test, LLR (augmented data
likelihood) and LLR (partial likelihood)

Data-set M0 Total %
Infections
Observed

ILR ˆE(p) LLR
(augmented data)

ˆE(p)

LLR (Partial)
ˆE(p)

α × 2
(
1 + dκ

)−1 100 0.0000243 0.005319 0.0000000

α × 2
(
1 + dκ

)−1 70 0.0002571 0.02473 0.2269000

α × 2
(
1 + dκ

)−1 40 0.0042040 0.1242 0.8014000

α × 2 exp
{
−κd2

}
100 0.4966585 0.0006974 0.0038500

α × 2 exp
{
−κd2

}
70 0.4929907 0.006932 0.0461200

α × 2 exp
{
−κd2

}
40 0.4937340 0.06909 0.2801000

β × 2
(
1 + dκ

)−1 100 0.0000006 0.0000 0.0000000

β × 2
(
1 + dκ

)−1 70 0.0000013 0.01566 0.1771000

β × 2
(
1 + dκ

)−1 40 0.0001413 0.1031 0.6801000

β × 2 exp
{
−κd2

}
100 0.4963660 0.02189 0.0157500

β × 2 exp
{
−κd2

}
70 0.4905312 0.03135 0.0393000

β × 2 exp
{
−κd2

}
40 0.4907014 0.1000 0.1295000

κ × 2
(
1 + dκ

)−1 100 0.0004014 0.0000000 0.0000000

κ × 2
(
1 + dκ

)−1 70 0.0002682 0.0000000 0.0000000

κ × 2
(
1 + dκ

)−1 40 0.0000569 0.0000000 0.6845000

κ × 2 exp
{
−κd2

}
100 0.4970400 0.0000000 0.0000000

κ × 2 exp
{
−κd2

}
70 0.4920980 0.0000000 0.0021380

κ × 2 exp
{
−κd2

}
40 0.5088031 0.0000000 0.2474000

Original
(
1 + dκ

)−1 100 0.0000013 0.000000 0.0000000

Original
(
1 + dκ

)−1 70 0.0000011 0.02533 0.1325000

Original
(
1 + dκ

)−1 40 0.0000569 0.04713 0.6845000

Original exp
{
−κd2

}
100 0.5026800 0.009208 0.0108500

Original exp
{
−κd2

}
70 0.4943048 0.004225 0.0294100

Original exp
{
−κd2

}
40 0.4920137 0.06743 0.1191000

Original
(New Seed)

(
1 + dκ

)−1 100 0.0000026 0.0000 0.0000000

Original
(New Seed)

(
1 + dκ

)−1 70 0.0000240 0.002046 0.1174000

Original
(New Seed)

(
1 + dκ

)−1 40 0.0009413 0.02326 0.6451000
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Table 2 continued

Data-set M0 Total %
Infections
Observed

ILR ˆE(p) LLR
(augmented data)

ˆE(p)

LLR (Partial)
ˆE(p)

Original
(New Seed)

exp
{
−κd2

}
100 0.5100904 0.0007158 0.0005900

Original
(New Seed)

exp
{
−κd2

}
70 0.4910087 0.01579 0.05212

Original
(New Seed)

exp
{
−κd2

}
40 0.4991936 0.03086 0.1722

the epidemic where the pattern of infection is clearly formed from isolated foci
(caused by primary infection) surrounded by clustered secondary infections. As a
result, residuals from the early stage of the epidemic (when the potential choice of
exposure locations iswidest)maydisplay the greatest evidence against the assumed
model and inclusion of residuals from later in the epidemic may serve to dilute
this evidence. Simulated epidemics are presented in Electronic Supplementary
Material Appendix 3 to illustrate this point.

– In contrast, theLLRTbased on the augmented data likelihood elicits some evidence
against the assumptions in all cases, including when the Gaussian kernel is fitted.
Moreover, in all cases the strength of the evidence as measured by the expected
p-value increases as the observation duration increases (and thus the percentage
of observed infections).

– The performance of the LLRT that uses the partial likelihood seems variable. It
detects evidence in cases where the observation duration is long, but appears to
degrade as less of the epidemic is observed. Therefore, the augmented data LLR
test may be a more robust approach.

– When we focus on the case where only 40% of the population is infected, we see
that the ILR test typically provides most evidence when the power-law kernel is
assumed. The augmented data likelihood approach performs best when the Gaus-
sian kernel is assumed. This last observation may illustrate the phenomenon of
reinforcement discussed earlier; the imputed data reinforce the ‘wrong’ assump-
tions of the fitted model and undermine to some extent the capacity of the imputed
likelihood ratio test to find evidence against the assumed model when it is poorly
specified.

– Although the ILR method fails to detect evidence against the model with a Gaus-
sian kernel, it is nevertheless worth scrutinising the imputed residuals in instances
where the p-value from the Anderson-Darling test is small, in order to see whether
any indication of the mis-specification can be discerned Lau et al. (2014). Figure 2
shows a histogram formed from the union of the imputed sets of residuals for
p < 0.05. The form of the histogram suggests that these p-values are small due to
imputed sets of residuals having too many extreme values. Arguably this is con-
sistent with true model being the exponential kernel which qualitatively displays
higher infection at short and long ranges then the Gaussian. Interpreting this in
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Fig. 1 Comparison of Latent Likelihood Ratio (LLR) test to Infection Link Residuals test: Plot of a grid
of bar-charts of the expected posterior predictive p-values for all simulated datasets generated. Each row
contains the results for each dataset. “Original” is the dataset generated with the original base set of
parameters. “New Seed” is the dataset generated with the original base set of parameters but with a different
random number generator seed. “Alpha x 2”, ‘Beta‘ x 2” and “Gamma x 2” are the datasets with α, β or γ

twice that of the original parameter set. Each column shows the results for each kernel that was deliberately
misfit to the data, which is generated from a known exponential kernel. “Gaussian” denotes a Gaussian
kernel was fitted, and “Power Law” denotes that a power-law kernel was fitted

the dual observer framework, we might say that, while B’s posterior probability
that C rejects the uniform model for the residuals is low (0.06005004), were C to
reject it would be likely that this was due to observing too many extreme residuals.

In order to determinewhether the tests produce false positives when the fitted kernel
is the same as the actual kernel, an extra set of computer runs was performed in which
an exponential kernel model was fitted to the simulated data generated from a model
with an exponential kernel. The results can be found in Table 3.

The values of ˆE(p) in Table 3 show the results of performing a test with M0 being
themodel with the true kernel andMA being an alternativemodel with a similar spatial
kernel. All the tests in the table do not detect discrepancy between the fitted model
and the alternative model, thus showing the tests do not have a propensity to produce
false positives.

5 Conclusions and discussion

In this paper we have investigated methods for assessing and comparing spatio-
temporal stochastic epidemic models—particularly with regard to the specification
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Fig. 2 Histogram of imputed ILRs, corresponding to p−values < 0.05 for the run where a model with a
Gaussian kernel was fitted to data generated with a Exponential kernel and the epidemic was observed until
all hosts reached the I state

Table 3 Comparison of Latent Likelihood Ratio (LLR) test to Infection Link Residuals test: data-set, alter-
native model tested and estimated expected p-values from the infection link residuals test, LLR (augmented
data likelihood) and LLR (partial likelihood)

Data-set MA Total%Population
Infectious

ILR ˆE(p) LLR (augmented
data) ˆE(p)

LLR (Partial)
ˆE(p)

Original exp {−κd} 100 0.502260 0.5410 0.649163

Original exp {−κd} 70 0.5032322 0.5910 0.6824

Original exp {−κd} 40 0.4898694 0.8043 0.7718

of the spatial kernel function. We have focussed on techniques that avoid the need
to increase the complexity of the fitted model (e.g. by specifying more highly
parametrised kernel functions). Rather, the methods that we consider can be imple-
mented as relatively straightforward addenda to a Bayesian analysis where the model
criticism is achieved by embedding classical testing methods within the Bayesian
analysis—in the same spirit as posterior predictive checking. In particular, we have
compared the ability of the infection-link residuals introduced by Lau et al. (2014)
to detect kernel mis-specification with that of tests based on latent likelihood ratio
tests. The simulation study uses data in which the transition into the I and R states
are observed, but can be easily adapted to snapshot data, data with under-reporting
and other forms of data censoring (Gamado et al. 2013), where epidemic model selec-
tion is often hindered by computational complexity. The results demonstrate that the
former approach performs well when the degree of model mis-specification in high -
that is when a power-law kernel is assumed when the true kernel is exponential—but
is unable to detect evidence when the true and assumed kernels are qualitatively more
similar. On the other hand, a test based on an augmented data latent likelihood is able
to elicit evidence of the more subtle mis-specification.
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The results provide further examples of the phenomenon of reinforcement, whereby
applying tests to date are imputed using themodel being testedmay have little power to
detect mis-specification. Since the additional data are imputed using the misspecified
model, it need not follow that basing the testing on more data leads to more power. In
certain cases, the ILRmethodology applied to the emergent phase of the epidemic only
provides more evidence of discrepancy than when the data from the full time period
is used. This in turns leads to the notion of how best to design a latent experiment,
or equivalently select a discrepancy variable based upon imputed data. How can one
use prior belief on model parameters to predict (before data are considered) which
form of latent test will be best able to detect a suspected mode of mis-specification?
Answering this question is a challenge which we seek to address in ongoing work.
Nevertheless, we suggest that the techniques presented in this paper can offer readily
implementable ways of checking model assumptions while avoiding the complexities
and instabilities associated with a purely Bayesian approach.

In this paper, we have opted to focus on methods that augment actual observations
with imputed data, so that imputed likelihoods for the augmented data are tractable.
An alternative approach would be to seek approximate likelihood functions for the
actual data, for example, using the synthetic likelihood approach of Wood (2010),
or simulation-based approaches such as ABC (for example, McKinley et al. 2009;
Csilléry et al. 2010; Sisson et al. 2018). The synthetic likelihood approach has been
used for non-spatial epidemics (Cook et al. 2008), but there are difficulties involved
in the use of these methods for the class of models which are the focus of this paper.
Exploring these approaches in the context of epidemic models would be of interest.
Moment closure methods have already proved useful in providing approximations to
likelihoods for non-spatial epidemic models (Krishnarajah et al. 2005, 2007), though
extending these approaches to the spatiotemporal setting considered here may be
challenging.
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Appendix: impact of imputation on the power of the latent likelihood
ratio test

The tests in Sect. 3 may appear to have the potential to be targeted at specific forms of
mis-specification but some caveats should be noted.When B imputes the latent process
x in order to specify a tractable classical test, they appeal to themodelling assumptions
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underlying M0. It follows that imputation will reinforce these assumptions to an extent
dependent on the amount of imputed information. For example, if the imputed x
included not only unobserved quantities x1 from the present experiment but also a
further m − 1 independent replicates x2, ..., xm then, for large m, π(p(θ, x)|y) ≈
U(0, 1) for a large range of tests, since the test result would be increasingly dominated
by the imputed replicates (Streftaris and Gibson 2012; Gelman et al. 2013).

To understand the effect of imputation on power more formally, we consider the
simple situation where B ′s prior distribution π0(θ) places all belief on a single value
θ0, giving a density π0(x) for the latent process x . We assume that the alternative
model, M1, is simple (i.e. has no free parameters) with sampling distribution π1(x).
Suppose now that B observes y = f (x), so that x is an augmented version of y
and imputes x via π0(x |y). They then impute the p-value, px computed by C from a
likelihood ratio test (LRT) applied to x . Suppose that B summarises their posterior
belief regarding C ′s evidence against π0 by the quantity

γx,δ(y) = π0(px < δ|y)

for some suitably small δ. A natural analogue of power for B would be the expectation
of γx,δ(y) under the alternative hypothesis, that is

βx = E
[
γx,δ(y)|M1

]
.

Note that when x ≡ y the quantity γy,δ(y) is an indicator function and βy is the power
of the uniformlymost powerful test obtained using theNeyman-Pearson Lemma. Then
we have following result.

Proposition A.1 For x, y, M0, M1 as described above, βx ≤ βy .

Proof The most powerful classical test of level δ of M0 v M1 that can be applied to the

imputed x is based on the ratio
π i
0(x)

π i
1(x)

where π i
0 and π i

1 represent the sampling densities

of the imputed x respectively underM0 andM1. Nowπ i
0(x) = π0(y)π0(x |y) = π0(x)

while π1(x) = π1(y)π0(x |y), so that

π i
0(x)

π i
1(x)

= π0(y)

π1(y)
.

Therefore, a LRT applied directly to y is equivalent to a LRT applied to x when
x ∼ π i

0(x) and x ∼ π i
1(x) are used as the sampling densities of x under the competing

hypotheses. We denote by py the resulting p-value.
Now, for the latent likelihood ratio test, B imputes the result of C ′s likelihood ratio

test applied to the imputed x , where C ′s test is based on the test statistic

π0(x)

π1(x)
= π i

0(x)

π1(x)
(3)
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with the associated p-value, px . By the Neyman-Pearson Lemma, the power of this
test cannot exceed that of the optimal test. We therefore have that for any given value
δ,

Pr(px < δ|M1) ≤ Pr(py < δ|M1) = βy

where x ∼ π i
1(x) and y ∼ π1(y) on the left and right-hand sides respectively. Note

that

Pr(px < δ|M1) =
∫

π0(px < δ|y)π1(y)dy = βx .

This completes the proof. 	


Now suppose more generally that M0 uses an arbitrary prior π0(θ), while M1
remains simple, and define βx (θ) and βy(θ) in the obvious way. Then under the prior
distribution, βy(θ) is absolutely dominant over βx (θ) so that B views with certainty
the LRT applied directly to y as giving the more powerful test of M0 against M1.

In the above proof the inequality βx ≤ βy arises from the disparity between π i
1(x)

and π1(x). We show that this disparity, as characterised using Kullback-Leibler (KL)
divergence, increases as the amount of imputation grows. Suppose that y = f (x)
and x = g(z), so that z represents the outcome of an experiment that is even more
informative than x . Consider again the case of simple hypotheses for M0 and M1, with
π0 and π1 denoting the respective sampling densities of quantities.

Repeating the argument used in the proof of the proposition, we note that the
optimal LRT based on the imputed z would have to use the sampling density of the
imputed z under the alternative hypothesis, π i

1(z) = π1(y)π0(z|y) resulting in the

analytically intractable test statistic π0(y)
π1(y)

. Our (sub-optimal) LLRT uses the density

π1(z) in place of π i
1(z). Note that π i

0 = π0. We now consider the Kullback-Leibler
divergence between π i

1(z) and π1(z). This can be calculated as

K L(π i
1, π1) =

∫
π i
1(z) log(

π i
1(z)

π1(z)
)dz

=
∫

π i
1(z) log(

π1(y)π0(x |y)π0(z|x)
π1(y)π1(x |y)π1(z|x) )dz

=
∫

π i
1(z)(log(

π0(x |y)
π1(x |y) ) + log(

π0(z|x)
π1(z|x) ))dz

=
∫

π i
1(z) log(

π0(x |y)
π1(x |y) )dz +

∫
π i
1(z) log(

π0(z|x)
π1(z|x) )dz

=
∫

π1(y)π0(x |y)π0(z|x) log(π1(y)π0(x |y)π0(z|x)
π1(y)π1(x |y)π0(z|x) )dz

+
∫

π1(y)π0(x |y)π0(z|x) log(π1(y)π0(x |y)π0(z|x)
π1(y)π0(x |y)π1(z|x) )dz
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The first integral above is the KL divergence between the density π i
1(z) =

π1(y)π0(x |y)π0(z|x) and the density π1(y)π1(x |y)π0(z|x). Suppose that the latter
is used on the denominator in a ratio test statistic applied to the imputed z. Then this
ratio is clearly π0(x)

π1(x)
where x is the imputed value and the power of the test corresponds

to that of a latent likelihood ratio test applied to x . The second integral above is itself
a KL divergence greater than zero. It follows that

K L(π i
1(z), π1(z)) > K L(π i

1(z), π1(y)π1(x |y)π0(z|x)).

In the light of this increasing divergence, we may suspect that the power of a
LRT that uses π1(z) on the denominator may be less than that of a test using
π1(y)π1(x |y)π0(z|x) or, equivalently, a latent likelihood ratio test applied directly
to the imputed x . When seeking a suitable latent process x , it may be prudent to min-
imise the extent of imputation and, consequently, the degree of reinforcement of the
model under test. That is, if y is specified by x which, in turn, is specified by z, then,
assuming the likelihoods π0(x |θ) and π1(x |θ) are tractable, x should be preferred to
z as the choice for the latent process.
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