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Abstract In this paper, we investigate the pharmacokinetics and effect of doxorubi-
cin and cisplatin in vascularized tumors through two-dimensional simulations. We take
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486 J. P. Sinek et al.

into account especially vascular and morphological heterogeneity as well as cellular
and lesion-level pharmacokinetic determinants like P-glycoprotein (Pgp) efflux and
cell density. To do this we construct a multi-compartment PKPD model calibrated
from published experimental data and simulate 2-h bolus administrations followed by
18-h drug washout. Our results show that lesion-scale drug and nutrient distribution
may significantly impact therapeutic efficacy and should be considered as carefully as
genetic determinants modulating, for example, the production of multidrug-resistance
protein or topoisomerase II. We visualize and rigorously quantify distributions of
nutrient, drug, and resulting cell inhibition. A main result is the existence of signi-
ficant heterogeneity in all three, yielding poor inhibition in a large fraction of the
lesion, and commensurately increased serum drug concentration necessary for an ave-
rage 50% inhibition throughout the lesion (the IC5o concentration). For doxorubicin
the effect of hypoxia and hypoglycemia (“nutrient effect”) is isolated and shown to
further increase cell inhibition heterogeneity and double the ICsg, both undesirable.
We also show how the therapeutic effectiveness of doxorubicin penetration therapy
depends upon other determinants affecting drug distribution, such as cellular efflux
and density, offering some insight into the conditions under which otherwise pro-
mising therapies may fail and, more importantly, when they will succeed. Cisplatin
is used as a contrast to doxorubicin since both published experimental data and our
simulations indicate its lesion distribution is more uniform than that of doxorubi-
cin. Because of this some of the complexity in predicting its therapeutic efficacy is
mitigated. Using this advantage, we show results suggesting that in vitro monolayer
assays using this drug may more accurately predict in vivo performance than for drugs
like doxorubicin. The nonlinear interaction among various determinants representing
cell and lesion phenotype as well as therapeutic strategies is a unifying theme of our
results. Throughout it can be appreciated that macroscopic environmental conditions,
notably drug and nutrient distributions, give rise to considerable variation in lesion
response, hence clinical resistance. Moreover, the synergy or antagonism of combined
therapeutic strategies depends heavily upon this environment.

Keywords In silico - Simulation - Pharmacokinetics - Prediction - Therapy

Mathematics Subject Classification (2000) 92C45

1 Introduction

While drug resistance to solid tumors is often a consequence of genetic factors, such
as upregulation of anti-apoptotic proteins or overexpression of efflux mechanisms,
factors at coarser physiological scales may also profoundly influence tumor therapeu-
tic response [50]. A tumor is a heterogeneous three-dimensional composite of fibrous
and connective tissues, stromal components, vasculature, and multiple clones of can-
cer cells. Atop this intrinsic heterogeneity is layered the anatomical and functional
irregularity of tumoral vasculature, characterized by erratic flow, collapsed vessels,
diminished oxygen tension, and a large mean tissue-to-vessel distance [5,29,30,34,
54]. As a consequence, the tumor microenvironment is highly variable, marked by
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gradients of nutrient and oxygen, resulting in regions of hypoxia, acidity, and necro-
sis, and heterogeneous proliferation. In order for an anticancer agent to be effective,
it must extravasate, diffuse through lesion tissue, and be transported into cells, where
it must bind to its target and induce cell apoptosis or mitotic inhibition. The tumor
environment is not conducive to these processes [50]. The vessel bed’s blood flow and
spatial distribution hinder uniform extravasation, calling into question the capability
of drug molecules to adequately distribute throughout tissue. Recent experiments in
vitro [38,73,81] and in vivo [40,57] demonstrate limited drug penetration through
tumors, especially highly protein-bound molecules like doxorubicin and paclitaxel.
Once a drug molecule has traversed lesion tissue from its point of extravasation and
is presented to a cancer cell, the path from extracellular space to intracellular target
is fraught with difficulties ranging from protonation due to the acidic environment,
which renders anthracyclines incapable of traversing membrane, to intracellular remo-
val by drug efflux pumps, to cellular processes that effect DNA repair and drug clea-
rance [3,15,31,65,71,79]. In addition to pharmacokinetics, drug pharmacodynamics
is equally impaired. Significant hypoxia and hypoglycemia throughout may induce cell
quiescence, reducing the efficacy of cell-cycle chemotherapeutic agents like doxoru-
bicin and cisplatin [18,19]. Hypoglycemia causes the glucose-regulated stress res-
ponse detrimental to the action of topoisomerase II-directed drugs like doxorubicin
[41,49,64,68].

The heterogeneity and three-dimensionality of the tumoral environment presents
a challenge to drug assessment, both during development and in the clinic. Whereas
a particular drug may show marked activity against a particular specimen in vitro,
its potency may vanish or become far less reliable in vivo. This is evidenced by the
differential between positive predictive accuracy of in vitro-assisted therapy selection
(around 70%) and negative predictive accuracy (around 90%), a situation not remar-
kably changed over the years [26,27]. Supraoptimal delivery of drug to cultured cells
eliminates the gauntlet of biobarriers in vivo described above, precluding the varia-
bility they induce. A drug that consistently works in vitro can therefore be expected
to only sometimes work in vivo. Unraveling the myriad interactions of therapeutic
determinants within the complex three-dimensional tumoral environment is evidently
difficult, resulting in high costs of drug development and patient suffering.

Perhaps the crystal ball we are attempting to build is incomplete when made only of
glass typically found in experimental labs; computer (in silico) simulations based on
mathematical modeling and calibrated with experimental data might fulfill a key aspect
of the lens. A significant capability of in silico experimentation (including simulated
assays) is the complete control over and monitoring of the simulated in vivo tumor
environment. Moreover, computer modeling can create hypothetical environments and
conditions impossible to achieve otherwise, the study of which is nonetheless instru-
mental in unraveling disease and drug mechanisms. This expansive control, founded
upon an adequately mechanistic mathematical basis, could facilitate the discovery of
hypotheses as to why certain drugs or therapeutic strategies would or would not be
effective, potentially on a patient-by-patient basis. The relative ease and cost-efficiency
of performing simulations could furthermore enable a thorough investigation of strate-
gies, revealing the optimal among them. The judicious combination of this burgeoning
technology with the capabilities of the wet-lab is an attractive development in both
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drug discovery and the clinical management of cancer leading to the easing of patients’
burdens.

The past two decades have witnessed explosive growth in the mathematical and
computational modeling of vascular and avascular tumors [1,4,7-9,13,36,43,44,56,
82]. As the basic elements of tumoral growth models have matured, specialized treat-
ments of angiogenesis and flow [2,46,47,69], drug delivery and response [33,40,52,
66,80], and effects of the tumoral microenvironment [23,45] have been developed.
Some simulation and analysis has provided great insight using one-dimensional mode-
ling (employing cylindrical or spherical symmetry) without discrete vasculature. More
recently, powerful numerical methods have been developed so as to simulate multi-
dimensional complex morphological progression and its relation to cell phenotype
and the microenvironment involving, for example, nutrient and biomechanical tissue
response [23,45,82].

In the present paper we examine therapeutic efficacy of two common drugs, cisplatin
and doxorubicin, in relation to phenotypic and microenvironmental conditions. Model
parameters govern extracellular drug/tissue diffusivity; cellular uptake, efflux, and
metabolism; cellular density; and the effect of nutrient heterogeneity on drug action.
Simulations are performed in a two-dimensional (non-symmetric) setting employing
discrete vasculature, which enables the incorporation of morphological and topologi-
cal influence on drug and nutrient distributions. The effect of these distributions on
therapeutic efficacy is of special interest. Sinek et al. [66] had earlier performed a
similar investigation; however, the pharmacokinetics and pharmacodynamics (PKPD)
component was rudimentary, assuming one homogenous lesion compartment and not
based upon experimentally acquired parameter values. In the present work we imple-
ment an extensive multi-compartment PKPD component whose parameter values are
calibrated via published experimental data. This enables a comparison of the tissue-
and cell-level drug dynamics of the two drugs, and facilitates the generation of hypo-
theses to explain their in vivo characteristics. We ask that the reader consider that if
doxorubicin and cisplatin were discovered only today, the simulations herein could
be seen as providing insight into their anticipated in vivo performance, potentially
streamlining and reducing costs of development. Indeed, the methodology presented
herein could, with additional development, be applied to both established and nascent
drugs to the end of refining clinical trials and assisting in clinical therapeutic strategy
to improve patient comfort and survival.

2 Mathematical model and parameters
2.1 Model description

The multiscale tumor growth and angiogenesis simulator developed by Zheng et al.
[82] is used to grow the lesions upon which we simulate chemotherapy. This is a
nonlinear, continuum scale, two-dimensional growth engine whose accuracy is made
possible by an adaptive finite element mesh due to Cristini et al. [11]. The mesh enables
multi-scale computation for finely resolving tumor morphology, especially around
important areas such as the necrotic/tumor and tumor/host interfaces and around capil-
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lary sprouts. Realistic and heterogenous vasculature through which nutrient and drug
is provided is generated via the angiogenesis model of Anderson and Chaplain [2].
The simulation field incorporates three phases (see Fig. 2): viable cancerous tissue,
normal host tissue, and necrotic debris. The lesion/host interface is demarked by thick
black contours, while the microvasculature appears as a web of thin red curves. Dark
interior regions are necrotic debris.

Briefly, nutrient and oxygen are provided through the discrete microvasculature,
which is generated in response to angiogenic regulators produced from perinecrotic
cells. This results in proliferation and tumor growth. The simple steady-state diffusion
equation

0=ky(1 —n)s + D,V?n — kyn 1)

is used to model nutrient delivery and uptake, where n is the local nutrient normalized
by the intravascular level, k, is a measure of vascular porosity (0 is impermeable,
oo is completely porous), § is the Dirac delta function located along the vasculature,
D,, is nutrient diffusivity, and k,, is the local rate of consumption by cells [82]. The
characteristically high porosity of tumor vasculature implies a very high setting of k&, so
that, essentially, vasculature provides a constant boundary condition of 1. Experiments
given in [51] demonstrate that oxygen penetrates approximately 150 pm into in vitro
spheroids before falling to about 10% of serum level. At this point necrosis ensues.
Combining this with a diffusivity D,, of around 60,000 um? min~! [53,70], the nutrient
uptake rate is calculated to be k, = 24 min—!. Waste resulting from necrotic cell
degradation is assumed to be removed via convection towards and through the tumor-
host interface as well as via scavenger cell phagocytosis. In regions where nutrient is
sufficient to maintain viability, mitosis is assumed to be directly proportional to its
concentration, with the proportionality constant dependent upon the average cell cycle
time of the malignant population.

Once the tumors are grown, drug administration via the vasculature is simulated by
our multi-compartment pharmacokinetics model, based upon earlier work of [15,17,
20,21]. For cisplatin, there are three compartments corresponding to (1) extracellular,
(2) cytosolic, and (3) DNA-bound drug. For doxorubicin, there is a fourth compartment
corresponding to intracellular organelles, e.g., lysosomes. The system of equations
governing transport for both drugs (with different parameter values) is

§1 = ky(sy — 51)8 4+ Ds Vs — Kjps1 + kb (s2/10°V,)

$2 = k1210%Vesy — kaisa + kazss — kazsa (1 — 53/sm) + kaoss — koasa )
53 = ko3so(1 — 53 /sm) — k3253 — k3s3

S4 = koasy — kaosa

where s; represents drug concentration in compartment i, k;; represents a transfer rate
from compartment i to j, and k; represents a rate of permanent removal from compart-
ment i and the system. sy is intravascular drug concentration during bolus, and sp, is a
DNA saturation parameter relevant to doxorubicin. V, is the volume of a cell (assumed
spherical with diameter 10 pum, yielding V. = 520 fL cell™") and appears in the first
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two equations to reconcile the dimensions of s, and s; (WM) with the dimensions of
all other compartments (fmoles/cell). ky and § are the same as in Eq. (1). The pri-
med rates appearing in the first equation are related to their unprimed counterparts
via k] ;= kij/F where F is the extracellular fraction of whole tissue. Taking a base-

line tumor density of p = 1.0E9 cells mL_l, a well-known representative value, in
combination with the cell volume previously quoted results in

F=1-—pV.(107"? mLfL™")
= 0.48, 3

also a reasonable value. Finally, Dy is the diffusivity of the drug through extracellular
space.

Both cisplatin and doxorubicin pass through cell membrane according to k1, (which
includes possible pump and transporter activity, as do all other rates). From there, the
drugs may efflux according to k21 or may bind to DNA according to k»3. The kinetics
differ from here for the two drugs. Cisplatin may be removed according to the rate k3,
which destroys the functioning of the drug and repairs the DNA [79]. Doxorubicin,
however, has an off rate given by k37, and moreover may be sequestered and released by
lysosomes according to k24 and ka» [3,31,59]. Although lysosomal flow to membrane
and exocytosis of sequestered drug plays a role in some drug resistant cell lines, we are
not necessarily modeling drug resistance via this function, and so assume this process
to be negligible in accordance with [16]. On the other hand, we are concerned with
the quantity of drug lysosomes can sequester, as this contributes to the cellular uptake
of drug, and hence, its penetration characteristics.

The pharmacodynamics model consists of the Hill-type equation along the lines of
those employed in [20,21]

N(n)

Tl A T @

where E is cell inhibition (1 minus surviving fraction), x is DNA-bound drug-time
product (area under the curve, or AUC), and A and m are phenomenologically fit
parameters. N (n) is a function of nutrient n ranging from 0 to 1 used to mimic the
effect of hypoxia and hypoglycemia. Results with doxorubicin show that cells in deeper
layers of spheroids do not respond as well to drug as do cells on the surface, even when
intracellular drug levels are taken into account [ 18, 19]. Other experiments demonstrate
reduced response in monolayer when cells are forced into quiescence due to reduced
oxygen [68]. Still others show that hypoglycemia can deplete topoisomerase II, thus
reducing the effect of some anthracyclines [64]. These results imply that the response of
cells to doxorubicin in vivo might correlate to the local nutrient, a phenomenon which
we herein refer to as the “nutrient effect.” For our purposes, the exact form of N is
not important. For simplicity, we choose N = n?, where p is a phenomenological
parameter derived from the data of [19], and equals 0.4. Since in our model n is
normalized with respect to the intravascular level, it runs from O to 1, and thus so
does N. Furthermore, at full nutrient levels, N = 1, and so cell inhibition is maximal.
In our simulations, drug pharmacokinetics (Egs. 2) is allowed to proceed from bolus
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Table 1 A complete summary of baseline pharmacokinetics and pharmacodynamics parameters

Parameter Description Baseline Value
Dox Cis
Ve Cell volume (fL cell 1) 520 520
) Cell density (cells mL~1) 1.0E9 1.0E9
F Interstitial fraction 0.48 0.48
Dy, Nutrient/ECM diffusivity (um2 min—1) 60E3 60E3
Dy Drug/ECM diffusivity (um? min~!) 1.0E3 30E3
kn Nutrient metabolism (min~!) 24 24
k12 Drug uptake (min—!) 5.40 0.054
ko Drug efflux (min—!) 5.40 1.56E-3
ko3 Drug—DNA binding (min™ ) 8.02E5 3.82E4
k32 Drug-DNA release (min—1) 1.80E3 0.0
k3 Drug—DNA repair (min—1) 0.0 0.015
kog Lysosomal sequestration (min_l) 10.0 0.0
k4o Lysosomal release (min™ l) 0.07 0.0
Sm Drug—DNA capacity (fmole) 1.00 00
A Phenomenological PD parameter 0.188 7.75
m Phenomenological PD parameter 1.14 1.58
p Nutrient effect parameter 0.4 0.0

Tumor growth and angiogenesis parameters can be found in [82]

initiation to washout 20 h later. During this time the locally varying DNA-bound AUC
is calculated and used to find cell inhibition (Eq. 4).

2.2 Pharmacokinetics model parameters

A generally acceptable theoretical setup for performing experiments to measure com-
partmental concentrations (and therefore to derive the rate constants we are after)
is either a suspension or monolayer in an inexhaustible drug-laden medium corres-
ponding to s;. Under these conditions, the relevant model consists of the last three
equations in Eqgs. (2), with s held constant. We will refer to this model as the modi-
fied version of Eqs. (2). All model parameters and values are summarized in Table 1.
These will be referred to as the baseline values, some of which will be adjusted later
to simulate different tumor characteristics and therapeutic treatments. We emphasize
that parameter values, having been derived from a variety of published experimental
data spanning many years and cell types, correspond to a prototypical tumor and can-
cer cells suitable for the simulations herein, but not necessarily representative of any
particular clinical specimen.

Cisplatin parameters We begin with cisplatin, setting k>4 and k47 to O since we assume
only three compartments, and k3> to O since we assume the repair rate k3 is the
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dominant removal rate of DNA-bound drug. k3 is next obtained as follows. In experi-
ments performed by Sadowitz et al. [60], adducts per million nucleotides on isolated
peripheral blood mononuclear cell DNA fall from 75 to 5 and 185 to 40 in 2 h in
two different experiments. Thus, assuming the exponential repair model s3 = k3s3,
we calculate the repair rate to be about 0.015 min—!. An initial estimate of k3 is then
made as follows. Sadowitz shows that for 7 uM cisplatin, in 2 h peripheral blood
mononuclear cells accumulate from about 25 (non-thiol-blocked cells) to 175 (thiol-
blocked cells) adducts per million nucleotides. Assuming that DNA consists of about
1.25E6 kbp, this converts to from 1.04E—4 to 7.27E—4 fmoles of Pt docked on the DNA
(1 atom/adduct). Neglecting the cell membrane and supposing DNA to be exposed
directly to the drug, we have the ODE $3 = 7X23 — k353, where A3 is a clearance
parameter (fL min—!). The solution is s3 = 7(X23/k3)(1 — exp(—kst)). Substituting
values of k3 = 0.015 min—!, 7 = 120 min, and 1.04E—4< s3 <7.27E0-4 fmole yields
0.27 < Ap3 < 1.9 fL min~!. To convert this to a rate we use the relation koz = A3/ Ve,
arriving at 5.19E—4 < ky3 < 3.65E-3 min~!. The assumption that DNA was exposed
directly to the cisplatin solution means that this rate is only a bootstrap approximation
and must be refined. We note that the extremely low ratio of adducts per kbp implies
that the saturation capacity of DNA with respect to cisplatin is never approached, and
SO set sy to 00.

Next, we estimate k12 and k»1. While doing this we will refine our initial estimate
of k23. The whole procedure involves fitting the best curves to data from Troger et al.
[76] (Fig. 1a). Troger exposed human tongue carcinoma CAL-27 cells in monolayer to
four different concentrations of cisplatin and then measured total intracellular amount
of Pt at selected times. This corresponds to s> + s3 in our model. Beginning with the
previous estimate of k»3 and setting s to concentrations used by Troger, we adjust k12
and k3 in the modified version of Egs. (2) until a good fit of Troger’s data is obtained.
Simultaneously, we adjust k3 to keep the DNA-bound drug true to results of Sadowitz
previously discussed. We remark that the disparity between the inward and outward
rates derived for cisplatin may be due in part to carrier-mediated transport, e.g., the
CTRI influx transporter.

Doxorubicin parameters Proceeding to doxorubicin we first obtain an acceptable
range for k1> and k1 from the literature. For a variety of anthracyclines, including
doxorubicin, initial estimates of cell membrane permeability P are taken from expe-
riments with SU-4 and SU-4R wildtype and resistant human lymphoma cells [17],
from experiments with EHR2 and EHR2/DNR+ wildtype and resistant Ehrlich ascites
tumor cells [15,16], and from experiments with MDA-468 breast cancer cells [40].
The range reportedis 2.4 < P < 1000 pm min~L. The relation kj» = PA./ V., where
A, represents the cell membrane area, can then be used to arrive at an initial range of
1.4 < k12 < 600 min~ !, which will be refined later. In the case of passive diffusion,
ko1 = k12. We note that these values are far larger than those obtained for cisplatin
previously. More generally, it has been remarked that cell membrane permeability for
cisplatin is much lower than for doxorubicin, etoposide, and vinblastine, although all
four drugs are thought to enter cells by passive diffusion [35].

We next turn our attention to DNA-binding affinity. Given the great DNA affinity
of the anthracyclines, saturability of the DNA must be taken into account, requiring
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600

500 -

400

300

Platinum (fmoles/1E6 Cells)

200
100 =
— »
0
0 500 1000 1500 2000 2500 3000 3500 4000 4500
Time (minutes)
® 51 micM 4128 micM ¢ 256 micM = 51.3 micM
Cell Inhibition for Cis and Dox
(b) Cis AUC (fmole-minutes)
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Cell Inhibition (%)

0 5 10 15 20 25 30 35 40 45 50
Dox AUC (fmole-minutes)
mDox aCis

Fig. 1 a Data from Troger et al. [76] used to calibrate k12, k21, and ko3 for the cisplatin model. Parameters
are fit simultaneously to all four curves treated as one set of data. b Cell inhibition fits for Eq. (4) using
Levasseur’s [42] data on A2780 ovarian cancer cells exposed in monolayer

@ Springer



494 J. P. Sinek et al.

an estimate of sy,. There is evidence a typical anthracycline molecule intercalation
occludes from 3 to 10 binding sites in a manner that cannot be corrected exactly by a
factor [48,59,74]; however, to a first approximation we assume that such a correction
can be applied. Demant and Friche [15] report a DNA binding site concentration of
about 5 mM within a cell volume of 1000 fL, yielding 5 fmoles of sites. A low value
of 0.7 fmoles is obtained by using our assumed value of 1.25E6 kbp and the reported
site exclusion parameter of about 3 from Rizzo et al. [59]. Tarasiuk et al. [74] find
that the DNA of human lymphocytes is comprised of about 6.0E6 kbp and that one
intercalating molecule of doxorubicin requires 10 base pairs. Thus, Tarasiuk’s data
implies a factor-corrected quantity of 1 fmole of binding sites, which we take as a
representative value of sp,.

DNA binding kinetics of the anthracyclines is nontrivial, perhaps requiring multiple
steps and demonstrating sequence specificity [58,59]. Bearing this in mind, as an
approximation it will suffice to assume non-specific, one-step binding and unbinding
according to the chemical reaction

koff .
drug molecule + DNA bp 2 intercalated bp.

on

A representative value for the binding coefficient in the above equation for doxoru-
bicin is reported as kon = 4.2E8 M~! min~! and a value of the unbinding coefficient
(identical with k32) as kot = 1800 min—! [59]. From ko, we calculate a clearance
parameter (as with cisplatin) given as A23 = konsm= 4.2E8 fL min~! (being cautious
with the scales of our dimensions). k23 can then be calculated as A3/ V., given in
Table 1.

We next turn our attention to the rates ko4 and k4p governing lysosomal sequestra-
tion. Experiments by Hurwitz et al. [31] using U-937 myeloid leukemia cells and their
dox-resistant variant U-A 10 show that the ratio of DNA-bound to lysosomally seques-
tered drug is about 3 (Hurwitz uses daunorubicin, an anthracycline related to doxo-
rubicin). In our modified model equations with all other parameters set as described
above, the amount of sequestered drug at equilibrium is dependent only upon the ratio
koa/ k4. This ratio furthermore does not affect the equilibrium quantity of DNA-bound
drug. Arbitrarily selecting ko4 = 1 min~!, we find that the appropriate DNA-bound
to lysosomally sequestered ratio is obtained by setting k42 to 0.007. Considering that
lysosomal membrane permeability is quite high [16], the lysosomally bound drug must
achieve equilibrium quickly, which can be modified by changing k»4 while keeping
the ratio kp4/ k4> constant. We find that increasing k4 by a factor of 10 reduces the
time required for the system (Eqgs. 2) to achieve 95% of equilibrium value (maxos) to
about 300 min, below which further increases in k»4 only reduce this time negligibly.
Thus, we set ko4 = 10 and k4p = 0.07.

To refine our initial range of k1, and k»1, we use the modified version of Egs. (2)
to compare our simulated monolayer uptake profiles of total intracellular drug with
those of DeGregorio et al. [ 14] using human Ewing’s sarcoma and rhabdomyosarcoma
cells. At 5.40 min~! both uptake profiles and equilibrium values compare favorably
at three test concentrations.
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Drug—tissue diffusivity The last pharmacokinetics parameter values needed are the
diffusivities D; of cisplatin and doxorubicin through tumor interstitium. For molecules
of their size (dox M.W. = 544, cis M.W. = 300), diffusivity should be about
30,000 umZ min~! [53,70]. However, doxorubicin faces particularly severe barriers
due to binding to extracellular constituents such as hyaluronic acid [37,38], and its
diffusivity in some tissues has been estimated to be as low as 1000 umz min—! [40],
which we take as our baseline value.

2.3 Pharmacodynamics model parameters

In order to calibrate the pharmacodynamics model (Eq. 4), we use in vitro data of
Levasseur et al. [42] with A2780 ovarian cancer cells exposed in monolayer to both
doxorubicin and cisplatin over a range of times and concentrations. We assume the
previously discussed modified pharmacokinetics model along with the values deri-
ved, and simulate Levassuer’s exposures followed by approximately 24 h of drug
washout in drug-free medium (s is set to 0). During this time, DNA-bound AUC is
calculated. These data are then used in conjunction with Levasseur’s surviving frac-
tion data to fit the parameters A and m in Eq. (4) using Microsoft Excel (Fig. 1b).
During this process, nutrient is assumed plentiful (n = 1), thus bypassing the nutrient
effect.

3 Computational simulations

3.1 Non-dimensionalization and numerical methods

Non-dimensionalization of Eqgs. 2 is via the length- and time-scales
L=Ds/kin T =ky;

with the compartmental concentrations transformed as

s1=s1/sy 52 =s2/1E6V.sy s3 = 53/1E6V.sy
sS4 = 54/1E6Vesy  Sm = sm/1E6V.sy
resulting in
PR _ - _ - _
51 =ky(1 =518+ V51 —51/F +kasa/F
52 =51 — ko152 + k3253 — k2352(1 — 53/5m) + k4254 — k2452

)

53 = ko352(1 — 53/5m) — k3253 — k353

S4 = koaS2 — k4254

The numerical methods for tumor growth and angiogenesis have been described in
detail in Zheng et al. [82]. For the reaction—diffusion equations (Egs. 2) we first use
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Strang splitting. Then the trapezoidal rule is applied to the reaction part, and the Crank-
Nicolson scheme, to the diffusion part. For a description of these methods, see Tyson
et al. [78] and references therein.

3.2 In silico experiments

Four in silico experiments are performed in the following manner:

1. Three simulated tumors are grown using Zheng et al.’s model [82]. Each lesion
represents one replication of each experiment.

2. The pharmacokinetics model (Egs. 5) is used to deliver drug to the lesions. In each
case we hold the intravascular concentration of drug s, constant for 2 h, then set
it to zero for eighteen more hours to allow washout.

3. DNA-bound AUC is computed by re-dimensionalizing s3 and time and integrating
using Matlab. The result is then used in the pharmacodynamics model (Eq. 4) to
compute cell inhibition. Nutrient (Eq. 1) is relevant when the nutrient effect is
employed.

Each lesion is produced based upon the same set of growth and vasculature parame-
ters (see Zheng et al. for a complete description), but randomness in the angiogenesis
algorithm and slightly different initial shapes produce different vasculatures and mor-
phologies. It is assumed that a tumor in vivo does not grow or regress appreciably
during the 20-h course of the therapy we are attempting to simulate, hence we stop
tumor and vascular growth during our in silico therapies. Intravascular concentrations
are calibrated in each case to produce a total cellular growth inhibition of 50%. This
concentration is referred to as the ICso. The sharp “square wave” delivery of drug
is perhaps a caricature of clinical bolus administration, but it allows for consistent
analysis and comparison of results.

Our first set of experiments compares DNA-bound drug AUC distributions of doxo-
rubicin and cisplatin under the baseline conditions in Table 1. We furthermore show
the homogenizing effect of doxorubicin retention on final DNA-bound AUC [19].
We next investigate the impact of inhibition heterogeneity on dosing requirements,
paying particular attention to the nutrient effect for doxorubicin under baseline condi-
tions and improved penetration by, for example, removing hyaluronic acid [37,38].
In our third set of simulations we more deeply investigate the effect of doxorubicin
penetration therapies under three circumstances: baseline tumor density, high tumor
density, and baseline tumor density with Pgp efflux activity. These are chosen because
they demonstrate a spectrum of possibilities due to their effect on cellular drug uptake.
High tumor density increases uptake, while Pgp efflux decreases it. In order to simu-
late increased penetration, we increase D for doxorubicin from its baseline value to
5000 pmz min~! for a moderate increase, and 30,000 for the maximum increase, thus
matching the performance of cisplatin. To simulate high tumor density we increase p
by 50% to 1.5E9 cells ml~!. This has the effect of lowering the interstitial fraction F
to 0.22, which in turn increases k|, and k3, while leaving all other rates unchanged.
Pgp efflux is simulated by increasing k»; by a factor of 10, which has the effect of redu-
cing all intracellular compartment concentrations by approximately the same factor.
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This is consistent with results of [10] that show Pgp activity can reduce intracellular
concentrations of daunorubicin (an anthracycline related to doxorubicin) by up to a
factor of 100. In our fourth and final set of experiments we investigate permeabilization
therapy with respect to cisplatin, whereby a detergent, such as digitonin, or electro-
permeabilization is used to increase the permeability of cell membrane [35,72]. We
take an extreme case, increasing the rate constants k12 and k»; from baseline both by a
factor of 100. Note that this does not increase the limiting intracellular or DNA-bound
levels of drug attained in simulated monolayer, only the rate at which these come to
equilibrium. Thus highly permeabilized, DNA-bound maxos is attained at 3.4 h of
exposure; further permeabilization reduces this negligibly. For comparison, maxos is
greater than 27 h for unpermeabilized cells. This therapy is simulated under both in
vivo baseline and very high cell densities achieved by increasing the baseline density
75% to 1.75E9 cells ml~!. At this density, the interstitial fraction F drops to a mere
0.08. Both of these are further compared to monolayer results to probe the conditions
under which in vitro assays can be used to predict clinical efficacy.

Although all treatments described are duplicated in each of the three in silico
tumors, we display only representative plots with appropriate summaries of all data.
The nutrient effect is only used where noted.

3.3 Results

First experiment We begin by examining DNA-bound AUC distributions at various
times in the baseline simulated lesions (each lesion corresponding to a column, I, II,
or II), shown in Fig. 2. From top to bottom, the times correspond to 2, 8, 14, and 20 h
post-bolus initiation. Levels are normalized relative to the average AUC within viable
lesion for comparison of heterogeneity. Although surrounding host tissue cells uptake
and bind with drug differently than cancer cells, we make no distinction in these color
plots; however, quantitative analytical results only consider DNA-bound drug within
viable lesion. The two left column sequences (Lesions I and II) show doxorubicin
AUC, while the rightmost column shows cisplatin. For both Lesions I and II, at 2 h
doxorubicin AUC is seen to be about three times the average (dark red) in the vicinity
of the vasculature, and almost O (blue) elsewhere. The distribution is only slightly
more homogeneous by 8 h. By 14 h the heterogeneity has lessened, with the peaks
close to the vasculature reaching only about 2.2. Finally, at the conclusion of washout
20 h after bolus initiation, the distribution has become much more homogeneous, with
peaks only reaching about 1.7 times the average. In contrast, cisplatin distribution
within Lesion III remains extremely homogeneous, right at the average, throughout
the entire treatment.

The probability distributions at the bottom, corresponding to AUC at 20 h post-
bolus initiation, allow for a more quantitative comparison. The two corresponding
to doxorubicin show much heterogeneity relative to cisplatin on the right. Using the
leftmost distribution as an example, the average DNA-bound AUC is found to be
6.04 fmole min. 25% of tumor cells receive less than 1.66 fmole min each, while 25%
of tumor cells receive more than 9.54 fmole min. The remaining 50% of the tumor cells
receive between these two values, a range of 7.88 fmole min. When normalized with
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Fig. 2 DNA-bound AUC at four times (rows 2, 8, 14, and 20 h) post-bolus initiation for three two-
dimensional simulated baseline tumor lesions (columns). I and II are doxorubicin, while /I is cisplatin.
Results are normalized to average lesion AUC at the time taken to enable comparison of distribution
heterogeneities. Thick black contours are tumor boundaries. Thin red curves are vasculature. Dark regions are
necrotic areas. Each unit represents 200 p m. Bottom probability distributions show final AUC distribution
at 20 h. A concise measure of heterogeneity is given by the inter-quartile range (IQR), depicted in the lower
left graph and explained in the text. Although AUC in host tissue is also shown in plots, analysis considers
only DNA-bound drug in viable lesion
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Table 2 Mean £ SD of the IC5( and the logs of their ratios with respect to monolayer treatments for
experiments to investigate the impact of drug and nutrient heterogeneity

Nutrient effect IC50, mono(KM) ICs0(uM) log(IC50/1C50, mono)

Doxorubicin baseline

Off 0.175 0.4824+0.163 0.424 £0.138 (*p < 0.05)
On 0.175 1.344+0.874 0.830 £ 0.261 (*p < 0.05)
Doxorubicin with penetration therapy

Off 0.175 0.197 £0.0172 0.0511 £0.0371 (p > 0.05)
On 0.175 0.371 +0.0356 0.325 £ 0.0407 (*p < 0.05)
Cisplatin baseline

N/A 7.05 7.14 £ 0.0757 0.00529 £ 0.00462 (p > 0.05)

IC50,mono 1s the IC5q of baseline cells in monolayer. At the 5% significance level using a one-tailed ¢ test,
the average log ratio for cisplatin does not exceed 0. On the other hand, in three of the four experiments
with doxorubicin, they do. Paired one-tailed ¢ tests show that the average log ICs ratios for doxorubicin
with the nutrient effect are greater than that without regardless of penetration therapy

respect to the average and expressed as a percent, this yields 131% (the interquartile
range, or IQR), and gives a concise measure of distribution heterogeneity (the closer to
0, the more homogeneous). IQR’s are given at each of the other time points as well. All
three tumors, despite varied lesion and vasculature morphologies, demonstrate similar
results (not all shown). Doxorubicin AUC IQR’s typically lessen from about 250% at
2 hto 150% at 20 h; cisplatin AUC IQR’s drop from about 10 to 2%. Interestingly, in
the run shown, the heterogeneity for cisplatin increases slightly in the last frame. This
happens in one of the other two tumors as well.

Second experiment We next investigate the impact of drug and nutrient heterogeneity
on cell inhibition distributions and ICsp’s. Bolus administrations are simulated for
cisplatin using baseline lesions exactly as in Fig. 2. The PD model (Eq. 4) is then used
to calculate cell inhibition. For doxorubicin we use baseline lesions as well as lesions
in which drug penetration therapy is applied. Experiments for dox are run both with
and without the nutrient effect.

A table of average ICso’s and log(ICs0/ IC50,mono)’s for these experiments is given
in Table 2. Here and throughout this paper “ICsp mono” refers to baseline cells exposed
in monolayer and serves as a reference. Note that, as these are simulated monolayer
exposures, IC50 mono is deterministic. Figure 3 shows a typical nutrient profile, using
Lesion II as an example with an IQR of 36%. This measurement is completely analo-
gous to that used in Fig. 2 except that here it is applied to nutrient distribution and there
is no normalization since nutrient levels are bounded absolutely from 0 to 100 percent,
the level within the vasculature, itself. Nutrient IQR’s for the other two lesions are
within 2% of this value.

At the 5% significance level, one-tailed 7 tests show that the average log ICs( ratio
is not greater than O for cisplatin, underscoring the homogeneity of its distribution. In
contrast, out of the four experiments performed for doxorubicin from the combinations
of nutrient effect and penetration therapy, three indicate that the average log ratios are
greater than O at the 5% significance level. Within this group of four we can analyze
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Fig. 3 Contour plot shows
nutrient distribution in Lesion II
demonstrating significant
heterogeneity. Other lesions are
similar

Nutrient

the strength of the nutrient effect. For the baseline lesion, the nutrient effect increases
the log ICs ratio by 0.406 units (a factor of about 2.5). For the lesion with penetration
therapy, the increase is 0.274 units (a factor of about 1.9). Paired ¢ tests show that
these differences are significant at the 5% level.

Cell inhibition distributions closely mirror their AUC distributions, with that of
cisplatin being virtually uniform at 50% inhibition throughout. Conversely, doxoru-
bicin displays heterogeneity, increased with the addition of the nutrient effect. Using
Lesion II as a representative example for doxorubicin, the upper block of frames in
Fig. 4 demonstrates the inhibition distributions for the baseline lesion with and without
the nutrient effect. While the broadening of the cumulative probability plot as well as
a comparison of the color distribution plots indicate that the nutrient effect increases
heterogeneity, inhibition IQR is reduced from 81 to 77% (again, not normalized).
The effect of penetration therapy in the lower block of frames is readily apparent.
IQR’s, color plots, and probability graphs all indicate more uniform inhibition, ran-
ging moderately from 35 to 65%. Again we see increased heterogeneity in the plots
with the addition of the nutrient effect. This time the IQR also reflects the increase.
Lesions I and III yield similar results.

Third experiment In our third set of simulations, we investigate the effect of the-
rapies designed to improve doxorubicin penetration under several combinations of
drug/interstitum diffusivities, cell densities, and drug efflux activities (e.g., Pgp).
Figure 5 gives bar graphs of (a) logICsq ratios and (b) AUC interquartile ranges
for three scenarios. The leftmost triplet corresponds to baseline tumor density and
no efflux, resulting in a condition of “normal” cellular uptake. The middle triplet
corresponds to high density with no efflux, a condition of high uptake. The rightmost
corresponds to baseline density with efflux, a condition of low uptake. For the log ICs
ratio (a), in the baseline tumor case there is a change of —0.388 log units in going from
no removal of hyaluronic acid to almost complete removal. When density is increa-
sed, the change increases to —0.709; however, when Pgp efflux is activated, ANOVA
reveals there is no statistical difference, and in fact, the measured change is posi-
tive. Results are similar when the nutrient effect is included, with all bars essentially
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Without Penetration Therapy

With Penetration Therapy

Cell Inhibition

0.0 0.2 0.4 06 08 1.0
Cell Inhibition

Fig. 4 (Upper block) Cell growth inhibition profile of Lesion II at baseline settings with and without
the nutrient effect after bolus administration depicted in Fig. 2. Probability plot and IQR are now of
inhibition distribution and are not normalized with respect to any average. Although the IQR indicates
decreased heterogeneity with the nutrient effect, both the color distribution plot and the probability plot
indicate increased heterogeneity as is evidenced by the broadening of the curve. (Lower block) The same
experiment, except with doxorubicin penetration increased. Now both the plots and IQR show increased
heterogeneity. The appropriate ICs is used in each experiment
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log(IC50/IC50_Mono
(a) a( ] )

*p<0.05 *p< 0.05 p>0.05
1.2
No Penetration Therapy

M Moderate Penetration Therapy
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Fig. 5 The effect of increasing doxorubicin penetration on a log(IC50/IC50 mono) and b interquartile
range shown in three cases: baseline tumor (excepting penetration therapy), high-density tumor, and normal
density tumor with Pgp efflux. High density has the effect of increasing drug uptake, while Pgp efflux has
the opposite effect. Three replications per bar with standard deviations and results of ANOVA displayed
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P>0.05 *P<0.05

0.00E+00 -
-4.00E-02
-8.00E-02
-1.20E-01
Baseline High
-1.60E-01 Density Density

Tumor Tumor

Fig. 6 Effect of permeabilization therapy with respect to cisplatin is shown in three cases. Bars are of
log(ICs50, perm /1C50,unperm) Where “perm” and “unperm” correspond to permeabilized and unpermeabilized
conditions. Three replications per bar with results of two-tailed  tests relative to monolayer displayed. While
there is a statistical difference at the 0.05 significance level for the high-density tumor, this disappears at
the 0.01 significance level

increased by a constant, approximately 0.37. For the AUC interquartile range (b),
it is seen that heterogeneity is greatest in the high density case and least in the Pgp
efflux case. Within each triplet the heterogeneity decreases with increasing penetration
therapy, as expected. The magnitudes of change mirror those for the log ICs ratios,
with the baseline case experiencing a moderate change (from 146 to 13%), the high
density case experiencing a dramatic change (from 217 to 52%), and the Pgp efflux
case experiencing the least change (from 57 to 4%).

Fourth experiment In our fourth and final set of simulations we investigate the effect of
permeabilization therapy vis-a-vis cisplatin. Figure 6 shows log(ICs0 perm/
ICs0,unperm) for three cases: monolayer, in vivo with baseline cell density, and in
vivo with high cell density. Here, the subscripts “perm” and “unperm” denote the
application or withholding of permeabilization therapy. Permeabilization results in a
decrease of 0.154 log ICsq units for simulated monolayers, i.e., a reduction of ICsq by
a factor of 0.7, and is thus effective in vitro. An interesting question is whether this
carries over in vivo, i.e., whether a monolayer assay can be used to predict clinical
efficacy. Improvements for the two in vivo simulations are comparable to monolayer
results, with all three log-differences about —0.14, and no statistical difference bet-
ween improvement for the baseline case and for monolayer at the 5% significance
level using a two-tailed ¢ test.

4 Discussion

In agreement with experimental observation, our simulations show that heterogenei-
ties of drug, nutrient, and oxygen, caused in part by irregular vasculature and lesion
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morphology, exist and can significantly impact therapeutic results. Moreover, the sense
and magnitude of their influence is not always intuitively obvious. A good example of
this is that, despite its well-noted penetration difficulties, doxorubicin performs well
clinically. Our simulations show that this may be somewhat explained by its retention
in tissue removed from vasculature, causing homogeneity of exposure to increase long
after the bolus has been terminated (Fig. 2). This phenomenon has been experimentally
verified in [19] with spheroids. Because of this, the resulting cell inhibition distribution
is more homogenous than would otherwise be expected. On the other hand, cisplatin
maintains an homogenous DNA-bound distribution at all times from bolus initiation
to 20 h later, resulting in an extremely uniform cell inhibition distribution. This result,
as well as the near equality of its ICso and ICs0 mono demonstrated in Table 2, has also
been experimentally verified with spheroids [18,32,37].

While retention in tissue contributes to the performance of doxorubicin in vivo,
Table 2 demonstrates that its heterogeneity of distribution contributes to increased
serum drug concentrations to match the same cell inhibition in monolayer. In one
case, the average amount of drug increases by nearly one log unit. It is reasonable to
expect that heterogeneity of nutrient, resulting in hypoxia and hypoglycemia, should
compound this problem for doxorubicin. Indeed, this is the case as can be seen by the
approximate doubling of the ICsp’s (0.482 pM vs. 1.34 and 0.197 vs. 0.371) when the
nutrient effectis applied. By graphically and quantitatively showing corresponding cell
inhibition distributions. Figure 4 offers further insight into these phenomena. Itis easily
seen that cell inhibition distributions are as heterogeneous as their corresponding DNA-
bound AUC distributions, with areas of lesion removed from vasculature experiencing
reduced cell inhibition. An examination of the probability plots in the upper block,
corresponding to baseline lesions, shows that a full 24% of viable lesion undergoes no
inhibition at all. It is clear from these graphs that penetration therapy greatly decreases
heterogeneity of cell inhibition (and commensurately, IC5g) as does removal of the
nutrient effect. The latter may be clinically feasible through, for example, carbogen
breathing or recombinant human Epo (tHuUEPO) administration [63,75].

One puzzling behavior is that while both the color and probability plots demons-
trate consistently increased heterogeneity brought about by the nutrient effect (as is
evidenced by the broadening of the probability curves), the IQR actually decreases in
the baseline case from 81 to 77%. This occurs with Lesions I and III as well. A solution
to the mystery is obtained by noticing that, absent the nutrient effect, a large portion
of the tumor either experiences no inhibition (about 24%, which is distant from the
vasculature) or an already heterogeneous inhibition (about 31%). The remaining 45%
receives a near homogeneous level of inhibition (the vertical portion of the curve),
and this fraction corresponds to tissue close to the vasculature. Thus, the only signi-
ficant heterogeneity that can be induced by the nutrient effect is within this fraction.
Indeed, it is just this part of the curve that broadens in the second probability distribu-
tion, indicating greater heterogeneity, as expected. As the IQR is designed to measure
heterogeneity somewhat more globally, it misses—in fact, misdiagnoses—the change
occurring within this fraction.

In addition to dosing requirements, there is a second and subtler reason to consi-
der heterogeneity of the inhibition distribution when treating clinical tumors. Hete-
rogeneities in microenvironmental conditions have been linked to increased lesion

@ Springer



Predicting drug pharmacokinetics and effect in vascularized tumors 505

fragmentation and invasiveness [12,25,39,45,55]. While the mechanisms underlying
this phenomenon are complex, involving myriad protein signaling events and activi-
ties at the cellular level, they may at least partly rely on gross lesion effects, including
those caused by drug administration.

Figure 5 shows what might be expected from therapies that increase doxorubicin
penetration by, for example, removing hyaluronic acid. As expected, for the baseline
tumors, greater homogeneity and level of AUC is achieved, resulting in reductions
of ICs¢. This effect has been experimentally verified using spheroids [37,38]. That it
should be more pronounced for high-density in silico tumors and completely absent
in the presence of Pgp efflux is intriguing. A potential explanation is availed by sim-
plifying the pharmacokinetics model (Eqgs. 2), reducing it to the one-dimensional,
one-compartment steady state diffusion equation 0 = DV?2s — ks with diffusivity D
and uptake rate k. In two dimensions, a segment of blood vessel acting as a source
next to a section of tissue approximates the one-dimensional case. This equation
has one governing parameter, the characteristic diffusion length L = \/D/k, and a
(non-unique) solution sy exp(—x /L), where x is distance from the source and sy is the
constant level of drug in the vasculature. Considering a section of tissue of thickness d
next to a vessel and a fixed exposure time, average AUC is proportional to the integral

d

/sV exp(—x/L)dx = syL(1 —exp(—d/L)). (6)
0

Let AUCsq be the fixed average AUC required for fifty percent cell inhibition. Then,
ignoring the constant of proportionality,

AUCso = ICsoL(1 — exp(—d/L)). (7

Increasing the diffusivity to simulate penetration therapy results in an increased cha-
racteristic length CL, where C > 1, and hence a new ICsg. The ratio of ICsq’s is
therefore

AUCso/CL(1 —exp(=d/CL)) (1 —exp(—=d/L))
AUCso/L(1 —exp(—d/L)) ~ C(1 —exp(—d/CL))’

®)

which approaches 1 as L — oo, and approaches 1/C as L — 0. Now, increasing cell
density has the effect of increasing k, resulting in a smaller L, thus manifesting the
differential in ICsg’s. Conversely, activating Pgp efflux has the effect of decreasing k,
resulting in a larger L, thus nullifying the differential.

That something along these lines is probably happening is demonstrated in Fig. 5b
by the generally high IQR’s for the high density case versus the low IQR’s for the Pgp,
and the large change in the high density triplet versus the Pgp triplet. Indeed, there is
experimental evidence that Pgp and other transporters might facilitate drug transport
further away from vasculature [77]. This could be an important point when deciding
upon appropriate therapies for tumors exhibiting different characteristics such as efflux
mechanisms and relatively high or low densities. Any therapy involves risk. There may
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be less to gain under certain conditions, advising that the therapy not be performed or
perhaps, that concomitant therapy be performed designed to optimize conditions.

The great homogeneity of both cisplatin AUC and cell inhibition demonstrated in
Fig. 2 and Table 2 indicate that in vitro assays using this drug may have relatively high
positive predictive accuracy. While our simulations do not yield enough resolution
to claim that the results herein answer this question, the outcome shown in Fig. 6
is of interest. There is no statistical difference at the 0.01 significance level between
improvement obtained by permeabilization therapy in the simulated tumors (even very
dense ones) and monolayer. This compares favorably with the findings of [72] in which
the improvement obtained via cisplatin permeabilization therapy in vitro is strongly
reflected by the improvement in isolated lung perfusion in rats.

While it can and should be argued that the simulations herein fail to account for some
(many!) critical aspects of tumor growth and drug response (such as clonal heteroge-
neity, cell phase sensitivity, and signaling pathways) and that parameter settings may
in some cases be inexact, it should not be concluded that these shortcomings invalidate
characteristics the simulations have revealed. Indeed, we have correctly post-dicted
several results: that doxorubicin retention results in a more uniform AUC and cell
inhibition than would otherwise be indicated by its penetration difficulties [19]; that
Pgp and other transporters might facilitate drug penetration into lesion tissue [77]; that
cisplatin achieves a highly uniform AUC, and its cellular in vitro monolayer inhibition
can closely match that of in vitro spheroids [18,32,37]; and that improvement due to
cisplatin permeabilization therapy in vitro has the potential to predict improvement
in vivo [72]. Through the model we have provided evidence that not only do macro-
scopic environmental conditions, namely, drug and nutrient distribution heterogeneity,
potentially greatly impact therapeutic efficacy, but also that the outcome of therapeutic
strategies can depend upon them in nonlinear and a priori unpredictable ways. The
results of our third set of experiments (doxorubicin penetration therapy) provide an
example. In light of this, it would be prudent to devote attention to factors residing at
coarser and more global scales than solely the genetic.

One of our broader goals is to demonstrate how increasingly sophisticated in silico
technology, driven by mathematical modeling and calibrated with experimental data,
can and is being developed to provide an alternate investigative and clinical tool com-
plementary to traditional methods [6,24,61,62,67]. It can well be imagined that were
doxorubicin and cisplatin discovered today, the in vivo simulations herein presented
could be used to anticipate their lesion- and cellular-scale pharmacokinetics, helping to
refine clinical trial design and lower costs. In clinical application, the results could be
used to guide therapeutic strategy. For example, any risks associated with doxorubicin
penetration therapy could be minimized if it were known that the patient’s tumor were
expressing Pgp or otherwise had lowered cellular uptake, according to the results given
in Fig. 5. With further development, we anticipate that in silico models and methods
similar to those in this paper will become increasingly accurate and useful. Towards
that end we are working on incorporating a more veridical model of vasculature along
the lines of McDougall and Stephanou, in which blood flow plays a key role in the
formation of vasculature [46,69]. We are furthermore developing 3D models, which
are proving successful at accurately simulating morphological evolution [23]. One
area of special interest is that of liposomal and nanovectored delivery. These have

@ Springer



Predicting drug pharmacokinetics and effect in vascularized tumors 507

the potential of unprecedented accuracy and specificity of delivery [22]. It would be
interesting to adapt the PKPD model herein, paying particular attention to transport
in and extravasation from blood vessels [28], to see what predictions can be made.

The power of in vitro experimentation lies in its ease of implementation while
remaining in the biological realm. By its very nature, in vitro experimentation attempts
to refine and isolate. Yet, much of what happens in vivo is the result of a nonlinear
system whose behavior is more than the sum of its parts. The power of in silico
simulation lies in its ability to integrate components into a virtual system capable of
reproducing such behavior, implicitly taking into account circuits of information flow
difficult to explicitly analyze. Accurately calibrated and rigorously validated, such
an integrated model could provide a “dry-lab” to be used as a powerful complement
to the traditional wet-lab in fundamental research, drug discovery, and the clinic.
It could be used to probe scenarios and test hypotheses that are either difficult or
impossible to instantiate in the body. Results could then suggest supportive in vitro
and in vivo experimentation, the end result being new therapeutic targets or strategies.
Simultaneously, weaknesses (or strengths!) of the in silico model could be uncovered
and addressed. Computational models have the potential to facilitate an era of great
discovery and progress in understanding and treating cancer, and providing new hope
to its victims.
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