Skip to main content
Log in

Bioreduction of Cr(VI) by Indigenously Isolated Bacterial Strains from Stream Sediment Contaminated with Tannery Waste

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The potential of indigenously isolated bacteria from the Estância Velha stream to reduce Cr(VI) was evaluated and also the chromium contamination over the past ten years was verified in one of the most important industrial centers of Brazil, the “Brazilian Capital of Tanneries,” Estância Velha municipality in the Rio Grande do Sul State, South Brazil. Samples were collected from the Estância Velha stream at the source (P1), as well as at upstream (P2) and downstream (P3) of the most demographically area. The bacterial strains reduced between 52.5 and 61.6% of 250 mg L–1 Cr(VI) in 48 h. The genus Acinetobacter was the most abundant and could efficiently reduce 500 mg L–1 of Cr(VI); for example, P2.8 and P2.9 strains of Acinetobacter ursingii reduced 21.3 and 24.5% of 500 mg L–1 of Cr(VI), respectively, after 48 h. Moreover, an analysis of Cr levels in the stream sediment reported up to 3594 mg. L–1 of total Cr and up to 138 mg. L–1 of Cr(VI) in 2009. Acinetobacter strains were identified as the most abundant and efficient in reducing Cr(VI), makes them an ideal candidate for cleaning environments contaminated with tannery effluents, an approach that is more cost-effective than the traditional methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Mitteregger-Junior H, Ferraz-Dias J, Lúcia-Yonema M, Arenzon A, Silva J, Pegas-Henriques JA (2006) Avaliação das atividades tóxicas e mutagênicas da água e do sedimento do Arroio Estância Velha, região coureira-calçadista, utilizando Allium cepa. J Braz Soc Ecotoxicol 1(2):147–151. https://doi.org/10.5132/jbse.2006.02.011

    Article  Google Scholar 

  2. Mwinyihija M (2011) Essentials of ecotoxicology in the tanning industry. J Environ Chem Ecotoxicol 3(13):323–331. https://doi.org/10.5897/JECE11.066

    Article  CAS  Google Scholar 

  3. Megharaj M, Avudainayagam S, Naidu R (2003) Toxicity of hexavalent chromium and its reduction by bacteria isolated from soil contaminated with tannery waste. Curr Microbiol 47(1):0051–0054. https://doi.org/10.1007/s00284-002-3889-0

    Article  CAS  Google Scholar 

  4. Hu J, Xiao Z, Zhou R, Deng W, Wang M, Ma S (2011) Ecological utilization of leather tannery waste with circular economy model. J Clean Prod 19(2–3):221–228. https://doi.org/10.1016/j.jclepro.2010.09.018

    Article  CAS  Google Scholar 

  5. Ackerley DF, Barak Y, Lynch SV, Curtin J, Matin A (2006) Effect of chromate stress on Escherichia coli K–12. J Bacteriol 188(9):3371–3381. https://doi.org/10.1128/JB.188.9.3371-3381.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Das AP, Mishra S (2010) Biodegradation of the metallic carcinogen hexavalent chromium Cr(VI) by an indigenously isolated bacterial strain. J Carcinog 9:6. https://doi.org/10.4103/1477-3163.63584

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bader JL, Gonzalez G, Goodell PC, Pillai SD, Ali AS (1999) Chromium-resistant bacterial populations from a site heavily contaminated with hexavalent chromium. Water Air Soil Pollut 109(1–4):263–276

    Article  CAS  Google Scholar 

  8. Cheng G, Li X (2009) Bioreduction of chromium (VI) by Bacillus sp. isolated from soils of iron mineral area. Eur J Soil Biol 45(5–6):483–487. https://doi.org/10.1016/j.ejsobi.2009.06.009

    Article  CAS  Google Scholar 

  9. Antizar-Ladislao B (2010) Bioremediation: working with bacteria. Elements 6(6):389–394. https://doi.org/10.2113/gselements.6.6.389

    Article  CAS  Google Scholar 

  10. Focardi S, Pepi M, Landi G, Gasperini S, Ruta M, Di Biasio P, Focardi SE (2012) Hexavalent chromium reduction by whole cells and cell free extract of the moderate halophilic bacterial strain Halomonas sp. TA–04. Int Biodeterior Biodegradation 66(1):63–70. https://doi.org/10.1016/j.ibiod.2011.11.003

    Article  CAS  Google Scholar 

  11. Srivastava N, Dhal B, Pandey BD (2014) Bioreduction of hexavalent chromium by Bacillus cereus isolated from chromite mine overburden soil. Adv Mater Res 828:81–91. https://doi.org/10.4028/www.scientific.net/AMR.828.81

    Article  CAS  Google Scholar 

  12. Marzan LW, Hossain M, Mina SA, Akter Y, Chowdhury AMA (2017) Isolation and biochemical characterization of heavy-metal resistant bacteria from tannery effluent in Chittagong city, Bangladesh: Bioremediation viewpoint. Egypt J Aquat Res 43(1):65–74. https://doi.org/10.1016/j.ejar.2016.11.002

    Article  Google Scholar 

  13. Rahatgaonkar AM, Mahore NR (2008) A selective bioreduction of toxic heavy metal ions from aquatic environment by Saccharomyces cerevisiae. Eur J Chem 5(4):918–923

    CAS  Google Scholar 

  14. Wani PA, Ayoola OH (2015) Bioreduction of Cr (VI) by heavy metal resistant Pseudomonas species. J Environ Sci Technol 8(3):122. https://doi.org/10.3923/jest.2015

    Article  CAS  Google Scholar 

  15. Benvenuti T, Kieling-Rubio MA, Klauck CR, Rodrigues MAS (2015) Evaluation of water quality at the source of streams of the Sinos River Basin, southern Brazil. Braz J Biol 75(2):98–104. https://doi.org/10.1590/1519-6984.1513

    Article  CAS  PubMed  Google Scholar 

  16. Vargas VMF, Migliavacca SB, de Melo AC, Horn RC, Guidobono RR, de Sá Ferreira ICF, Pestana MHD (2001) Genotoxicity assessment in aquatic environments under the influence of heavy metals and organic contaminants. Mutat Res 490(2):141–158. https://doi.org/10.1016/S1383-5718(00)00159-5

    Article  CAS  PubMed  Google Scholar 

  17. APHA, Awwa, WPCF (2005) Standard methods for the examination of water and wastewater. American Public Health Association, Washington

    Google Scholar 

  18. Camargo F, Okeke BC, Bento FM, Frankenberger WT (2005) Diversity of chromium-resistant bacteria isolated from soils contaminated with dichromate. Appl Soil Ecol 29(2):193–202. https://doi.org/10.1016/j.apsoil.2004.10.006

    Article  Google Scholar 

  19. Sambrook J, Russel DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Nova York

    Google Scholar 

  20. Stackebrandt E, Liesack W (1993) Nucleic acids and classification. Academic Press, London

    Google Scholar 

  21. Edwards U, Rogall T, Blockerl H, Emde M, Böttge EC (1989) Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16s ribosomal RNA. Nucleic Acids Res 17(19):7843–7853

    Article  CAS  Google Scholar 

  22. Durai G, Rajasimman M (2011) Biological treatment of tannery wastewater, a review. J Environ Sci Technol 4(1):1–17. https://doi.org/10.3923/jest.2011.1.17

    Article  CAS  Google Scholar 

  23. Joutey NT, Sayel H, Bahafid W, El Ghachtouli N (2015) Mechanisms of hexavalent chromium resistance and removal by microorganisms. Rev Environ Contam Toxicol 233:45–69. https://doi.org/10.1007/978-3-319-10479-9_2

    Article  CAS  PubMed  Google Scholar 

  24. Estância Velha (2018) Diagnóstico da qualidade ambiental do arroio Estância Velha. Secretaria de Meio Ambiente e Preservação Ecológica da Prefeitura de Estância Velha, Estância Velha.

  25. Brazil (2005) Resolução no 357, de 17 de março de 2005. Conselho Nacional do Meio Ambiente (CONAMA), Brasília

  26. Dong C, Chen CW, Chen CF (2013) Distribution and contamination status of chromium in surface sediments of northern Kaohsiung Harbor. Taiwan J Environ Sci 25(7):1450–1457. https://doi.org/10.1016/S1001-0742(12)60200-9

    Article  CAS  Google Scholar 

  27. Brazil (2009) Resolução no 420, de 28 de dezembro de 2009. Conselho Nacional do Meio Ambiente (CONAMA), Brasília.

  28. Rosales RM, Faz A, Gómez-Garrido M, Muñoz MA, Murcia FJ, González V, Acosta JA (2017) Geochemical speciation of chromium related to sediments properties in the riverbed contaminated by tannery effluents. J Soils Sediments 17(5):1437–1448. https://doi.org/10.1007/s11368-016-1412-7

    Article  CAS  Google Scholar 

  29. Zahoor A, Rehman A (2009) Isolation of Cr(VI) reducing bacteria from industrial effluents and their potential use in bioremediation of chromium containing wastewater. J Environ Sci 21(6):814–820. https://doi.org/10.1016/S1001-0742(08)62346-3

    Article  CAS  Google Scholar 

  30. Farag S, Zaki S (2010) Identification of bacterial strains from tannery effluents and reduction of hexavalent chromium. J Environ Biol 31(5):877–882

    CAS  Google Scholar 

  31. He M, Li X, Liu H, Miller SJ, Wang G, Rensing C (2011) Characterization and genomic analysis of a highly chromate resistant and reducing bacterial strain Lysinibacillus fusiformis ZC1. J Hazard Mater 185(2–3):682–688. https://doi.org/10.1016/j.jhazmat.2010.09.072

    Article  CAS  PubMed  Google Scholar 

  32. Pal A, Datta S, Paul AK (2013) Hexavalent chromium reduction by immobilized cells of Bacillus sphaericus AND 303. Braz Arch Biol Technol 56(3):505–512. https://doi.org/10.1590/S1516-89132013000300019

    Article  Google Scholar 

  33. Ilias M, Rafiqullah IM, Debnath BC, Mannan KSB, Hoq MM (2011) Isolation and characterization of chromium (VI)-reducing bacteria from tannery effluents. Indian J Microbiol 51(1):76–81. https://doi.org/10.1007/s12088-011-0095-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Karmakar M, Ray RR (2013) Characterization of a hexavalent chromium reducing bacterial strain isolated from tannery effluents of Kolkata. Int J Pharm Biol Arch 4(2):337–341

    Google Scholar 

  35. Wani PA, Omozele AB, Wasiu IA, Jamiu KO (2015) Cr(VI) reduction by indigenous Bacillus species PB5 isolated from contaminated soil of Abeokuta, Ogun State, Nigeria. Int J Soil Sci 10:203–210. https://doi.org/10.3923/ijss.2015.203.210

    Article  CAS  Google Scholar 

  36. Essahale A, Malki M, Marin I, Moumni M (2012) Hexavalent chromium reduction and accumulation by Acinetobacter AB1 isolated from Fez tanneries in Morocco. Indian J Microbiol 52(1):48–53. https://doi.org/10.1007/s12088-011-0187-1

    Article  CAS  PubMed  Google Scholar 

  37. Zakaria ZA, Zakaria Z, Surif S, Ahmad WA (2007) Hexavalent chromium reduction by Acinetobacter haemolyticus isolated from heavy-metal contaminated wastewater. J Hazard Mater 146(1–2):30–38. https://doi.org/10.1016/j.jhazmat.2006.11.052

    Article  CAS  PubMed  Google Scholar 

  38. Narayani M, Shetty V (2012) Characteristics of a novel Acinetobacter sp. and its kinetics in hexavalent chromium bioreduction. J Microbiol Biotechnol 22(5):690–698

    Article  CAS  Google Scholar 

  39. Rehman F, Faisal M (2015) Toxic hexavalent chromium reduction by Bacillus pumilis, Cellulosimicrobium cellulans and Exiguobacterium. Chin J Oceanol Limn 33(3):585–589. https://doi.org/10.1007/s00343-015-4155-1

    Article  CAS  Google Scholar 

  40. Kavita B, Keharia H (2012) Reduction of hexavalent chromium by Ochrobactrum intermedium BCR400 isolated from a chromium-contaminated soil. Biotech 2(1):79–87. https://doi.org/10.1007/s13205-011-0038-0

    Article  CAS  Google Scholar 

  41. Das S, Mishra J, Das SK, Pandey S, Rao DS, Chakraborty A, Sudarshan M, Das N, Thatoi H (2014) Investigation on mechanism of Cr(VI) reduction and removal by Bacillus amyloliquefaciens, a novel chromate tolerant bacterium isolated from chromite mine soil. Chemosphere 96:112–121. https://doi.org/10.1016/j.chemosphere.2013.08.080

    Article  CAS  PubMed  Google Scholar 

  42. Molokwane PE, Meli KC, Nkhalambayausi-Chirwa EM (2008) Chromium (VI) reduction in activated sludge bacteria exposed to high chromium loading: Brits culture (South Africa). Water Res 42(17):4538–4548. https://doi.org/10.1016/j.watres.2008.07.040

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anelise Beneduzi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

284_2020_1936_MOESM1_ESM.jpg

Supplementary file1 Estância Velha stream: a) map of Brazil showing the location of Estância Velha municipality; b) satellite view of the area; c) water sampling points of Estância Velha stream: P1 source, P2 upstream, and P3 downstream of the area of most highly populated (JPG 178 kb)

Supplementary file2 (DOCX 36 kb)

Supplementary file3 (DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silveira, L.F., Viscardi, M., Longoni, L. et al. Bioreduction of Cr(VI) by Indigenously Isolated Bacterial Strains from Stream Sediment Contaminated with Tannery Waste. Curr Microbiol 77, 1262–1270 (2020). https://doi.org/10.1007/s00284-020-01936-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-020-01936-1

Navigation