Skip to main content
Log in

Hitherto Unknown Terpene Synthase Organization in Taxol-Producing Endophytic Bacteria Isolated from Marine Macroalgae

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Taxol is a successful anti-cancer drug, which extensively studied in Taxus spp. However, microbial endophytes also reported as taxol producers, and especially fungal endophytes extensively studied for the taxol biosynthesis pathway. Although it was well considered, the taxol biosynthesis pathway remains undisclosed since its discovery in bacteria. To decipher this gap, we isolated and identified the endophytic bacteria such as Bacillus flexus strain DMTMMB08, Bacillus licheniformis strain DMTMMB10, and Oceanobacillus picturae strain DMTMMB24, which are unprecedented for taxol production. Subsequently, the genome annotation of these bacteria exhibited the isoprene biosynthesis pathway and terpene synthase profile. Feasibly, this is the very first report on taxol-producing endophytic bacteria from the non-Taxus host and solitary investigation on its genome analysis. The genomic insight into the bacterial system for taxol biosynthesis leads to understanding the terpene synthesis and evolution. This piece of work could expand our perception of the diversity of terpenes and their related natural products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Rowinsky EK, Cazenave LA, Donehower RC (1990) Taxol: a novel investigational antimicrotubule agent. J Natl Cancer Inst 82:1247–1259. https://doi.org/10.1093/jnci/82.15.1247

    Article  PubMed  CAS  Google Scholar 

  2. Wani MC, Taylor HL, Wall ME, Coggon P, McPhail AT (1971) Plant antitumor agents VI. Isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J Am Chem Soc 93:2325–2327. https://doi.org/10.1021/ja00738a045

    Article  PubMed  CAS  Google Scholar 

  3. Flores-Bustamante ZR, Rivera-Orduña FN, Martínez-Cárdenas A, Flores-Cotera LB (2010) Microbial paclitaxel: advances and perspectives. J Antibiot 63:460–467. https://doi.org/10.1038/ja.2010.83

    Article  CAS  Google Scholar 

  4. Jennewein S, Wildung MR, Chau M, Walker K, Croteau R (2004) Random sequencing of an induced Taxus cell cDNA library for identification of clones involved in taxol biosynthesis. Proc Natl Acad Sci USA 101:9149–9154. https://doi.org/10.1073/pnas.0403009101

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Hao X, Pan J, Zhu X (2013) Taxol producing fungi. In: Ramawat KG, Mérillon J-M (eds) Natural products. Springer, Berlin, pp 2797–2812

    Chapter  Google Scholar 

  6. Croteau R, Ketchum REB, Long RM, Kaspera R, Wildung MR (2006) Taxol biosynthesis and molecular genetics. Phytochem Rev 5:75–97. https://doi.org/10.1007/s11101-005-3748-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. McElroy C, Jennewein S (2018) Taxol® biosynthesis and production: from forests to fermenters. In: Schwab W, Lange BM, Wüst M (eds) Biotechnology of natural products. Springer, Cham, pp 145–185

    Chapter  Google Scholar 

  8. Kusari S, Singh S, Jayabaskaran C (2014) Rethinking production of Taxol® (paclitaxel) using endophyte biotechnology. Trends Biotechnol 32:304–311. https://doi.org/10.1016/j.tibtech.2014.03.011

    Article  PubMed  CAS  Google Scholar 

  9. Yang Y, Zhao H, Barrero RA et al (2014) Genome sequencing and analysis of the paclitaxel-producing endophytic fungus Penicillium aurantiogriseum NRRL 62431. BMC Genomics 15:69. https://doi.org/10.1186/1471-2164-15-69

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Page M, Landry N, Boissinot M, Helie M-C, Harvey M, Gagne M (2000) Bacterial mass production of taxanes and paclitaxel. U.S. Patent No. 6,030,818. U.S. Patent and Trademark Office, Washington, DC

  11. Subramanian M, Maruthamuthu M (2019) Draft genome sequences of two Bacillus spp. and an Oceanobacillus sp. strain isolated from marine macroalgae. Microbiol Resour Announc. https://doi.org/10.1128/MRA.01417-18

    Article  PubMed  PubMed Central  Google Scholar 

  12. Stoltzfus JR, So R, Malarvithi PP, Ladha JK, de Bruijn FJ (1997) Isolation of endophytic bacteria from rice and assessment of their potential for supplying rice with biologically fixed nitrogen. Plant Soil 194:25–36. https://doi.org/10.1023/A:1004298921641

    Article  CAS  Google Scholar 

  13. McPartland TJ, Patil RA, Malone MF, Roberts SC (2012) Liquid–liquid extraction for recovery of paclitaxel from plant cell culture: solvent evaluation and use of extractants for partitioning and selectivity. Biotechnol Prog 28:990–997. https://doi.org/10.1002/btpr.1562

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Srinivasan V, Roberts SC, Shuler ML (1997) Combined use of six-well polystyrene plates and thin layer chromatography for rapid development of optimal plant cell culture processes: application to taxane production by Taxus sp. Plant Cell Rep 16:600–604. https://doi.org/10.1007/BF01275499

    Article  PubMed  CAS  Google Scholar 

  15. Cardellina JH (1991) HPLC separation of taxol and cephalomannine. J Liq Chromatogr 14:659–665. https://doi.org/10.1080/01483919108049278

    Article  CAS  Google Scholar 

  16. Strobel G, Stierle A, Hess WM (1994) The stimulation of taxol production in Taxus brevifolia by various growth retardants. Plant Sci 101:115–124. https://doi.org/10.1016/0168-9452(94)90247-X

    Article  CAS  Google Scholar 

  17. Sambrook J, Maniatis T, Fritsch EF, Laboratory CSH (1987) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  18. Turner S, Pryer KM, Miao VP, Palmer JD (1999) Investigating deep phylogenetic relationships among cyanobacteria and plastids by small subunit rRNA sequence analysis. J Eukaryot Microbiol 46:327–338. https://doi.org/10.1111/j.1550-7408.1999.tb04612.x

    Article  PubMed  CAS  Google Scholar 

  19. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410. https://doi.org/10.1016/S0022-2836(05)80360-2

    Article  CAS  PubMed  Google Scholar 

  20. Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M (2007) KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res 35:W182–185. https://doi.org/10.1093/nar/gkm321

    Article  PubMed  PubMed Central  Google Scholar 

  21. Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y (2015) The I-TASSER suite: protein structure and function prediction. Nat Methods 12:7–8. https://doi.org/10.1038/nmeth.3213

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. LaskowskiRoman A, Rullmann J, Antoon C, MacArthur Malcolm W, Kaptein R, ThorntonJanet M (1996) AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J Biomol NMR. https://doi.org/10.1007/BF00228148

    Article  Google Scholar 

  23. Rao PVS, Mantri VA (2006) Indian seaweed resources and sustainable utilization: scenario at the dawn of a new century. Curr Sci 91:164–174

    Google Scholar 

  24. Kadam SU, Tiwari BK, O’Donnell CP (2013) Application of novel extraction technologies for bioactives from marine algae. J Agric Food Chem 61:4667–4675. https://doi.org/10.1021/jf400819p

    Article  PubMed  CAS  Google Scholar 

  25. Greenhagen B, Chappell J (2001) Molecular scaffolds for chemical wizardry: learning nature’s rules for terpene cyclases. Proc Natl Acad Sci USA 98:13479–13481. https://doi.org/10.1073/pnas.261562898

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Lodeiro S, Xiong Q, Wilson WK, Kolesnikova MD, Onak CS, Matsuda SPT (2007) An oxidosqualene cyclase makes numerous products by diverse mechanisms: a challenge to prevailing concepts of triterpene biosynthesis. J Am Chem Soc 129:11213–11222. https://doi.org/10.1021/ja073133u

    Article  PubMed  CAS  Google Scholar 

  27. Trapp SC, Croteau RB (2001) Genomic organization of plant terpene synthases and molecular evolutionary implications. Genetics 158:811–832

    PubMed  PubMed Central  CAS  Google Scholar 

  28. Keeling CI, Dullat HK, Yuen M, Ralph SG, Jancsik S, Bohlmann J (2010) Identification and functional characterization of monofunctional ent-copalyl diphosphate and ent-kaurene synthases in white spruce reveal different patterns for diterpene synthase evolution for primary and secondary metabolism in gymnosperms. Plant Physiol 152:1197–1208. https://doi.org/10.1104/pp.109.151456

    Article  PubMed  CAS  Google Scholar 

  29. Kawaide H, Imai R, Sassa T, Kamiya Y (1997) Ent-kaurene synthase from the fungus Phaeosphaeria sp. L487. cDNA isolation, characterization, and bacterial expression of a bifunctional diterpene cyclase in fungal gibberellin biosynthesis. J Biol Chem 272:21706–21712. https://doi.org/10.1074/jbc.272.35.21706

    Article  PubMed  CAS  Google Scholar 

  30. Oikawa H, Toyomasu T, Toshima H, Ohashi S, Kawaide H, Kamiya Y, Ohtsuka M, Shinoda S, Mitsuhashi W, Sassa T (2001) Cloning and functional expression of cDNA encoding aphidicolan-16β-ol synthase: a key enzyme responsible for formation of an unusual diterpene skeleton in biosynthesis of aphidicolin. J Am Chem Soc 123:5154–5155. https://doi.org/10.1021/ja015747j

    Article  PubMed  CAS  Google Scholar 

  31. Vogel BS, Wildung MR, Vogel G, Croteau R (1996) Abietadiene synthase from grand fir (Abies grandis) cDNA isolation, characterization, and bacterial expression of a bifunctional diterpene cyclase involved in resin acid biosynthesis. J Biol Chem 271:23262–23268. https://doi.org/10.1074/jbc.271.38.23262

    Article  PubMed  CAS  Google Scholar 

  32. Hayashi K-I, Kawaide H, Notomi M, Sakigi Y, Matsuo A, Nozaki H (2006) Identification and functional analysis of bifunctional ent-kaurene synthase from the moss Physcomitrella patens. FEBS Lett 580:6175–6181. https://doi.org/10.1016/j.febslet.2006.10.018

    Article  PubMed  CAS  Google Scholar 

  33. Chen M, Harris GG, Pemberton TA, Christianson DW (2016) Multi-domain terpenoid cyclase architecture and prospects for proximity in bifunctional catalysis. Curr Opin Struct Biol 41:27–37. https://doi.org/10.1016/j.sbi.2016.05.010

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Chen F, Tholl D, Bohlmann J, Pichersky E (2011) The family of terpene synthases in plants: a mid-size family of genes for specialized metabolism that is highly diversified throughout the kingdom. Plant J 66:212–229. https://doi.org/10.1111/j.1365-313X.2011.04520.x

    Article  PubMed  CAS  Google Scholar 

  35. Hillwig ML, Xu M, Toyomasu T, Tiernan MS, Wei G, Cui G, Huang L, Peters RJ (2011) Domain loss has independently occurred multiple times in plant terpene synthase evolution. Plant J 68:1051–1060. https://doi.org/10.1111/j.1365-313X.2011.04756.x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Jia Q, Chen X, Köllner TG, Rinkel J, Fu J, Labbé J, Xiong W, Dickschat JS, Gershenzon J, Chen F (2019) Terpene synthase genes originated from bacteria through horizontal gene transfer contribute to terpenoid diversity in fungi. Sci Rep 9:9223. https://doi.org/10.1038/s41598-019-45532-1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Cao R, Zhang Y, Mann FM, Huang C, Mukkamala D, Hudock MP, Mead ME, Prisic S, Wang K, Lin F-Y, Chang T-K, Peters RJ, Oldfield E (2010) Diterpene cyclases and the nature of the isoprene fold. Proteins 78:2417–2432. https://doi.org/10.1002/prot.22751

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Morrone D, Chambers J, Lowry L, Kim G, Anterola A, Bender K, Peters RJ (2009) Gibberellin biosynthesis in bacteria: separate ent-copalyl diphosphate and ent-kaurene synthases in Bradyrhizobium japonicum. FEBS Lett 583:475–480. https://doi.org/10.1016/j.febslet.2008.12.052

    Article  PubMed  CAS  Google Scholar 

  39. Gao Y, Honzatko RB, Peters RJ (2012) Terpenoid synthase structures: a so far incomplete view of complex catalysis. Nat Prod Rep 29:1153–1175. https://doi.org/10.1039/c2np20059g

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Fujihashi M, Sato T, Tanaka Y et al (2018) Crystal structure and functional analysis of large-terpene synthases belonging to a newly found subclass. Chem Sci 9:3754–3758. https://doi.org/10.1039/C8SC00289D

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank USIC (University Scientific Instrumentation Centre) of Madurai Kamaraj University, UGC-BSR for fellowship support, and Dr. J. R. Swathy, IIT Madras, for her help in instrumentation analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Murugan Marudhamuthu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 8364 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Subramanian, M., Marudhamuthu, M. Hitherto Unknown Terpene Synthase Organization in Taxol-Producing Endophytic Bacteria Isolated from Marine Macroalgae. Curr Microbiol 77, 918–923 (2020). https://doi.org/10.1007/s00284-020-01878-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-020-01878-8

Navigation