Skip to main content
Log in

Termitarium-Inhabiting Bacillus spp. Enhanced Plant Growth and Bioactive Component in Turmeric (Curcuma longa L.)

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Curcumin (diferuloyl methane) is the main bioactive component of turmeric (Curcuma longa L.) having remarkable multipotent medicinal and therapeutic applications. Two Bacilli isolated from termitarium soil and identified as Bacillus endophyticus TSH42 and Bacillus cereus TSH77 were used for bacterization of rhizome for raising C. longa ver. suguna for growth and enhancement. Both the strains showed remarkable PGP activities and also chemotactic in nature with high chemotactic index. Turmeric plants bacterized with strains B. endophyticus TSH42 and B. cereus TSH77 individually and in combination increased plant growth and turmeric production up to 18% in field trial in comparison to non-bacterized plants. High-performance liquid chromatography analysis was performed to determine the content of curcumin, which showed concentration of curcumin in un-inoculated turmeric as 3.66 g which increased by 13.6% (4.16 g) when combination of TSH42 and TSH77 was used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Anoop K, Suseela Bhai R, Shiva KNA (2014) Survey on the incidence of rhizome rot disease in major turmeric growing tracts of south India and isolation of associated organisms. Indian J Adv Plant Res 6(1):17–23

    Google Scholar 

  2. Lal J (2012) Turmeric, curcumin and our life: a review. Bull Environ Pharmacol Life Sci 1:11–17

    Google Scholar 

  3. Osawa T, Sugiyama Y, Inayoshi M, Kawakishi S (1995) Antioxidative activity of tetrahydrocurcuminoides. Biosci Biotechnol Biochem 59:1609–1612

    Article  CAS  PubMed  Google Scholar 

  4. Chattopadhyay I, Biswas K, Bandyopadhyay U, Banerjee RK (2004) Turmeric and curcumin: biological actions and medicinal applications. Curr Sci 87:44–53

    CAS  Google Scholar 

  5. Lugtenberg BJ, Kravchenko LV, Simons M (1999) Tomato seed and root exudate sugars: composition, utilization by Pseudomonas biocontrol strains and role in rhizosphere colonization. Environ Microbiol 1:439–446

    Article  CAS  PubMed  Google Scholar 

  6. Maheshwari DK (2010) Plant growth and health promoting bacteria, microbiology monograph, vol 18. Springer, Berlin, p 448

    Google Scholar 

  7. Maheshwari DK (2011) Bacteria in agrobiology: crop ecosystems. Springer, Berlin, p 434

    Book  Google Scholar 

  8. Dangerfield JM, Mccarthy TS, Ellery WN (1998) The mound-building termite Macrotermes michaelseni as an ecosystem engineer. J Trop Ecol 14:507–520

    Article  Google Scholar 

  9. Jones CG, Lawton JH, Shachak M (1994) Organisms as ecosystem engineers. In: Samson FB, Knopf FL (eds) Ecosystem management. Springer, New York, pp 130–147

    Chapter  Google Scholar 

  10. Fall S, Brauman A, Chotte JL (2001) Comparative distribution of organic matter in particle and aggregate size fraction in the mounds of with different feeding habitats in Senegal: Cubitermesnio koloensis and Macrotermes bellicosus. Appl Soil Ecol 17:131–140

    Article  Google Scholar 

  11. Lal R (1988) Effects of macrofauna on soil properties in tropical ecosystems. Agric Ecosyst Environ 24:101–116

    Article  Google Scholar 

  12. Brauman A (2000) Effect of gut transit and mound deposit on soil organic matter transformations in the soil feeding termite: a review. Eur J Soil Biol 36:117–125

    Article  Google Scholar 

  13. Fall S, Hamelin J, Ndiaye F, Assigbetse K, Aragno M, Chotte JL, Brauman A (2007) Differences between bacterial communities in the gut of a soil-feeding termite (Cubitermesnio koloensis) and its mounds. Appl Environ Microbiol 73:5199–5208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Manjula A, Sathyavathi S, Pushpanathan M, Gunasekaran P, Rajendhran J (2014) Microbial diversity in termite nest. Curr Sci 106:1430–1434

    Google Scholar 

  15. Nicholson WL (2002) Roles of Bacillus endospores in the environment. Cell Mol Life Sci 59:410–416

    Article  CAS  PubMed  Google Scholar 

  16. Bouizgarne B (2013) Bacteria for plant growth promotion and disease management. In: Maheshwari DK (ed) Bacteria in agrobiology: disease management. Springer, Berlin, pp 15–47

    Chapter  Google Scholar 

  17. Borriss R (2011) Use of plant-associated Bacillus strains as biofertilizers and biocontrol agents in agriculture. In: Maheshwari DK (ed) Bacteria in agrobiology: plant growth responses. Springer, Berlin, pp 41–76

    Chapter  Google Scholar 

  18. Kim HJ, Jang YP (2009) Direct analysis of curcumin in turmeric by DART-MS. Phytochem Anal 20:372–377

    Article  CAS  PubMed  Google Scholar 

  19. Gantait A, Barman T, Mukherjee PK (2011) Validated method for estimation of curcumin in turmeric powder. Indian J Tradit Knowl 10:247–250

    Google Scholar 

  20. Paramasivam M, Poi R, Banerjee H, Bandyopadhyay A (2009) High-performance thin layer chromatographic method for quantitative determination of curcuminoids in Curcuma longa germplasm. Food Chem 113:640–644

    Article  CAS  Google Scholar 

  21. Jayaprakasha GK, Jagan Mohan Rao L, Sakariah KK (2002) Improved HPLC method for the determination of curcumin, desmethoxycurcumin, and bisdemethoxycurcumin. J Agric Food Chem 50:3668–3672

    Article  CAS  PubMed  Google Scholar 

  22. Wichitnithad W, Jongaroonngamsang N, Pummangura S, Rojsitthisak P (2009) A simple isocratic HPLC method for the simultaneous determination of curcuminoids in commercial turmeric extracts. Phytochem Anal 20:314–319

    Article  CAS  PubMed  Google Scholar 

  23. Goren AC, Cikrikci S, Çergel M, Bilsel G (2009) Rapid quantitation of curcumin in turmeric via NMR and LC–tandem mass spectrometry. Food Chem 113:1239–1242

    Article  Google Scholar 

  24. Peret-Almeida L, Cherubino APF, Alves RJ, Dufossé L, Gloria MBA (2005) Separation and determination of the physico-chemical characteristics of curcumin, desmethoxycurcumin and bisdemethoxycurcumin. Food Res Int 381:1039–1044

    Article  Google Scholar 

  25. Chauhan A, Maheshwari DK, Kim K, Bajpai VK (2016) Termitarium inhabiting Bacillus endophyticus TSH42 and Bacillus cereus TSH77 colonizing Curcuma longa L.: isolation, characterization and evaluation of their biocontrol and plant growth promoting activities. Can J Microbiol. doi:10.1139/cjm-2016-0249

    PubMed  Google Scholar 

  26. Kumar H, Bajpai VK, Dubey RC, Maheshwari DK, Kang SC (2010) Wilt disease management and enhancement of growth and yield of Cajanus cajan (L) var. Manak by bacterial consortia amended with chemical fertilizer. Crop Prot 30:1396–1403

    Article  Google Scholar 

  27. Weller DM, Cook RJ (1983) Suppressing of take-all of wheat by seed treatments with fluorescent pseudomonads. Phytopathologia 73:463–469

    Article  Google Scholar 

  28. Dubey RC, Maheshwari DK (2012) Practical microbiology. S. Chand & Co., New Delhi, p 397

    Google Scholar 

  29. Gomez KA, Gomez AA (1984) Statistical procedures for agricultural research. Wiley, Hoboken, p 680

    Google Scholar 

  30. Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28:1327–1350

    Article  CAS  PubMed  Google Scholar 

  31. Cleland RE (1990) Auxin and cell elongation. In: Davis PJ (ed) Plant hormones and their role in plant growth and development. Kluwer Academic Publishers, Dordrecht, pp 132–148

    Google Scholar 

  32. Ali B, Sabri AN, Ljung K, Hasnain S (2009) Auxin production by plant associated bacteria: impact on endogenous IAA content and growth of Triticum aestivum L. Lett Appl Microbiol 48:542–547

    Article  CAS  PubMed  Google Scholar 

  33. Sachdev DP, Chaudhari HG, Kasture VM, Dhavale DD, Chopade BA (2009) Isolation and characterization of indole acetic acid (IAA) producing Klebsiella pneumoniae strains from rhizosphere of wheat (Triticum aestivum) and their effect on plant growth. Indian J Exp Biol 47:993

    CAS  PubMed  Google Scholar 

  34. Patten CL, Glick BR (2002) Role of Pseudomonas putida indole acetic acid in development of the host plant root system. Appl Environ Microbiol 68:3795–3801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dubeikovsky AN, Mordukhova EA, Kochetkov VV, Polikarpova FY, Boronin AM (1993) Growth promotion of blackcurrant softwood cuttings by recombinant strain Pseudomonas fluorescens BSP53a synthesizing an increased amount of indole-3-acetic acid. Soil Biol Biochem 25:1277–1281

    Article  Google Scholar 

  36. Kim KY, Jordan D, McDonald GA (1998) Effect of phosphate solubilizing bacteria and vesicular–arbuscular mycorrhizae on tomato growth and soil microbial activity. Biol Fertil Soils 26:79–87

    Article  CAS  Google Scholar 

  37. Elkoca E, Kantar F, Sahin F (2007) Influence of nitrogen fixing and phosphorus solubilizing bacteria on the nodulation, plant growth, and yield of chickpea. J Plant Nutr 31:157–171

    Article  Google Scholar 

  38. Rodríguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339

    Article  PubMed  Google Scholar 

  39. Kloepper JW, Leong J, Teintze M, Schroth MN (1980) Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature 286:885–886

    Article  CAS  Google Scholar 

  40. Arora NK, Kang SC, Maheshwari DK (2001) Isolation of siderophore producing strains of Rhizobium meliloti and their biocontrol potential against Macrophomina phaseolina that causes charcoal rot of groundnut. Curr Sci 81:673–677

    Google Scholar 

  41. Gao S, Wu H, Yu X, Qian L, Gao X (2016) Swarming motility plays the major role in migration during tomato root colonization by Bacillus subtilis SWR01. Biol Control 98:11–17

    Article  CAS  Google Scholar 

  42. Frankland GC, Frankland PF (1887) Studies on some new microorganisms obtained from air. Philos Trans R Soc Lond Ser 178:257–287

    Article  Google Scholar 

  43. Reva ON, Smirnov VV, Pettersson B, Priest FG (2002) Bacillus endophyticus sp. nov., isolated from the inner tissues of cotton plants (Gossypium sp.). Int J Syst Evol Microbiol 52:101–107

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The financial support from UGC, Bahadur Shah Zafar Marg, New Delhi is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dinesh Kumar Maheshwari or Vivek K. Bajpai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chauhan, A.K., Maheshwari, D.K., Dheeman, S. et al. Termitarium-Inhabiting Bacillus spp. Enhanced Plant Growth and Bioactive Component in Turmeric (Curcuma longa L.). Curr Microbiol 74, 184–192 (2017). https://doi.org/10.1007/s00284-016-1172-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-016-1172-z

Keywords

Navigation