Skip to main content

Advertisement

Log in

Mycobacterium tuberculosis Antigen Wag31 Induces Expression of C-Chemokine XCL2 in Macrophages

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Tuberculosis is still a major threat to human health. To date, only approximately half of the proteins encoded by Mycobacterium tuberculosis H37Rv have been assigned specific functions. Wag31 (Rv2145c) is one of the bacterial proteins whose function is mostly unknown. Using a modified split-ubiquitin membrane yeast two-hybrid system, we screened a macrophage cDNA library with Wag31 as bait and identified XCL2, a C-subfamily chemokine, as a binding partner for Wag31. More importantly, Wag31 was found to specifically stimulate XCL2 expression in macrophages. The results from this study demonstrate that expression of C-chemokine is not restricted to certain types of T cells and natural killer cells. Because C-chemokine is chemotactic for CD8+ and CD4+ T cells, our novel findings could provide a new mechanism by which the bacteria induce cell-mediated immunity and by which Wag31 could be a potential target for controlling M. tuberculosis infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bhatt K, Salgame P (2007) Host innate immune response to Mycobacterium tuberculosis. J Clin Immunol 27:347–362

    Article  PubMed  CAS  Google Scholar 

  2. World Health Organization (2001) Anti-tuberculosis drug resistance in the world: the WHO/IUTLD global project on anti-tuberculosis drug resistance surveillance. Geneva, Switzerland

    Google Scholar 

  3. World Health Organization (1999) The world health report 1999, making a difference. Geneva, Switzerland

    Google Scholar 

  4. Cole ST, Brosch R, Parkhill J et al (1998) Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537–544

    Article  PubMed  CAS  Google Scholar 

  5. Fu LM, Fu-Liu CS (2007) The gene expression data of Mycobacterium tuberculosis based on Affymetrix gene chips provide insight into regulatory and hypothetical genes. BMC Microbiol 14:7–37

    Google Scholar 

  6. Hermans PW, Abebe F, Kuteyi VI et al (1995) Molecular and immunological characterization of the highly conserved antigen 84 from Mycobacterium tuberculosis and Mycobacterium leprae. Infect Immun 63:954–960

    PubMed  CAS  Google Scholar 

  7. Flardh K (2003) Essential role of DivIVA in polar growth and morphogenesis in Streptomyces coelicolor A3(2). Mol Microbiol 49:1523–1536

    Article  PubMed  Google Scholar 

  8. Kang CM, Abbott DW, Park ST et al (2005) The Mycobacterium tuberculosis serine/threonine kinases PknA and PknB: substrate identification and regulation of cell shape. Genes Dev 19:1692–1704

    Article  PubMed  CAS  Google Scholar 

  9. Nguyen L, Scherr N, Gatfield J et al (2007) Antigen 84, an effector of pleiomorphism in Mycobacterium smegmatis. J Bacteriol 189:7896–7910

    Article  PubMed  CAS  Google Scholar 

  10. Allen SJ, Crown SE, Handel TM (2007) Chemokine: receptor structure, interactions, and antagonism. Annu Rev Immunol 25:787 Mycobacterium smegmatis 820

    Article  PubMed  CAS  Google Scholar 

  11. Flynn JL, Chan J (2001) Immunology of tuberculosis. Annu Rev Immunol 19:93 Mycobacterium smegmatis 129

    Article  PubMed  CAS  Google Scholar 

  12. Cao W, Liu NS, Tang S et al (2008) Acetyl-coenzyme A acyltransferase 2 attenuates the apoptotic effects of BNIP3 in two human cell lines. Biochim Biophys Acta 1780:873–880

    PubMed  CAS  Google Scholar 

  13. Ye XX, Lu H, Yu Y et al (2005) pp5644 interacts with phosphatidylinositol-4-phosphate adaptor protein-1 associated protein-1. Mol Cell Biochem 271:151–158

    Article  PubMed  CAS  Google Scholar 

  14. Kelner GS, Kennedy J, Bacon KB et al (1994) Lymphotactin: a cytokine that represents a new class of chemokine. Science 266:1395–1399

    Article  PubMed  CAS  Google Scholar 

  15. Muller S, Dorner B, Korthaeuer U et al (1995) Cloning of ATAC, an activation-induced, chemokine- related molecule exclusively expressed in CD8+ T lymphocytes. Eur J Immunol 25:1744–1748

    Article  PubMed  CAS  Google Scholar 

  16. Hedrick JA, Saylor V, Figueroa D et al (1997) Lymphotactin is produced by NK cells and attracts both NK cells and T cells in vivo. J Immunol 158:1533–1540

    PubMed  CAS  Google Scholar 

  17. Wards BJ, Lisle GW, Collins DM (2000) An esat6 knockout mutant of Mycobacterium bovis produced by homologous recombination will contribute to the development of a live tuberculosis vaccine. Tuber Lung Dis 80:185–189

    Article  PubMed  CAS  Google Scholar 

  18. Pym AS, Brodin P, Majlessi L et al (2003) Recombinant BCG exporting ESAT-6 confers enhanced protection against tuberculosis. Nat Med 9:533–539

    Article  PubMed  CAS  Google Scholar 

  19. Yoshida T, Imai T, Takagi S et al (1996) Structure and expression of two highly related genes encoding SCM-1/human lymphotactin. FEBS Lett 395:82–88

    Article  PubMed  CAS  Google Scholar 

  20. Mawuenyega KG, Forst CV, Dobos KM et al (2005) Mycobacterium tuberculosis functional network analysis by global subcellular protein profiling. Mol Biol Cell 16:396–404

    Article  PubMed  CAS  Google Scholar 

  21. Mattow J, Schaible UE, Schmidt F et al (2003) Comparative proteome analysis of culture supernatant proteins from virulent Mycobacterium tuberculosis H37Rv and attenuated M. bovis BCG Copenhagen. Electrophoresis 24:3405–3420

    Article  PubMed  CAS  Google Scholar 

  22. Orme IM (1987) The kinetics of emergence and loss of mediator T lymphocytes acquired in response to infection with Mycobacterium tuberculosis. J Immunol 138:293–298

    PubMed  CAS  Google Scholar 

  23. Orme IM (1993) The role of CD8+ T cells in immunity to tuberculosis infection. Trends Microbiol 1:77–178

    Article  PubMed  CAS  Google Scholar 

  24. Grotzke JE, Lewinsohn DM (2005) Role of CD8+ T lymphocytes in control of Mycobacterium tuberculosis infection. Microbes Infect 7:7767–7788

    Google Scholar 

  25. Pinxteren LAH, Cassidy JP, Smedegaard BHC et al (2000) Control of latent Mycobacterium tuberculosis infection is dependent on CD8 T cells. Eur J Immunol 30:3689–3698

    Article  PubMed  Google Scholar 

  26. Mogues T, Goodrich ME, Ryan L et al (2001) The relative importance of T cell subsets in immunity and immunopathology of airborne Mycobacterium tuberculosis infection in mice. J Exp Med 193:271–280

    Article  PubMed  CAS  Google Scholar 

  27. Bianchi G, Sozzani S, Zlotnik A et al (1996) Migratory response of human natural killer cells to lymphotactin. Eur J Immunol 26:3238–3241

    Article  CAS  Google Scholar 

  28. Kennedy J, Kelner GS, Kleyensteuber S et al (1995) Molecular cloning and functional characterization of human lymphotactin. J Immunol 155:203–209

    PubMed  CAS  Google Scholar 

  29. Dorner B, Muller S, Entschladen F et al (1997) Purification, structural analysis, and function of natural ATAC, a cytokine secreted by CD8+ T cells. J Biol Chem 272:8817–8823

    Article  PubMed  CAS  Google Scholar 

  30. Ordeway D, Higgins DM, Sanchez-Campillo J et al (2007) XCL1 (lymphotactin) chemokine produced by activated CD8 T cells during the chronic stage of infection with Mycobacterium tuberculosis negatively affects production of IFN-γ by CD4 T cells and participates in granuloma stability. J Leukoc Biol 82:1221–1229

    Article  Google Scholar 

  31. Gonzalez-Juarrero M, Hattle JM, Izzo A et al (2005) Disruption of granulocyte macrophage-colony stimulating factor production in the lungs severely affects the ability of mice to control Mycobacterium tuberculosis infection. J Leukoc Biol 77:914–922

    Article  PubMed  CAS  Google Scholar 

  32. Boismenu R, Feng L, Xia Y et al (1996) Chemokine expression by intraepithelial γδ T cells. Implications for the recruitment of inflammatory cells to damaged epithelia. J Immunol 157:985–992

    PubMed  CAS  Google Scholar 

  33. International Union of Immunological Societies/World Health Organization (2001) Subcommittee on Chemokine Nomenclature, Chemokine/Chemokine Receptor Nomenclature. J Leukoc Biol 70:465–466

    Google Scholar 

  34. Huang H, Li F, Cairns CM et al (2001) Neutrophils and B cells express XCR1 receptor and chemotactically respond to lymphotactin. Biochem Biophys Res Commun 281:378–382

    Article  PubMed  CAS  Google Scholar 

  35. Dorner BG, Scheffold A, Rolph MS et al (2002) MIP-1alpha, MIP-1beta, RANTES and ATAC/lymphotactin function together with IFN-γ as type 1 cytokines. Proc Natl Acad Sci USA 99:6181–6186

    Article  PubMed  CAS  Google Scholar 

  36. Cerdan C, Devilard E, Xerri L et al (2001) The C-class chemokine lymphotactin costimulates the apoptosis of human CD4+ T cells. Blood 97:2205–2212

    Article  PubMed  CAS  Google Scholar 

  37. Cerdan C, Serfling E, Olive D (2000) The C-class chemokine, lymphotactin, impairs the induction of Th1-type lymphokines in human CD4+ T cells. Blood 96:420–428

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants to H. Lu from the National Nature Science Foundation of China (NSFC Grant No. 30671175 and 30370752) and the Specialized Research Fund for the Doctoral Program of High Education (SRFDP Grant No. 20060246017). Additional support was provided by a discovery grant from the Natural Science and Engineering Research Council of Canada to X. Zhao.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xin Zhao or Hong Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, W., Tang, S., Yuan, H. et al. Mycobacterium tuberculosis Antigen Wag31 Induces Expression of C-Chemokine XCL2 in Macrophages. Curr Microbiol 57, 189–194 (2008). https://doi.org/10.1007/s00284-008-9172-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-008-9172-2

Keywords

Navigation