Skip to main content

Advertisement

Log in

Current topics in human SLE genetics

  • Review
  • Published:
Springer Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

Susceptibility to systemic lupus erythematosus (SLE) depends on genetic and environmental factors. Genome scan studies have identified eight chromosomal regions with significant linkage to SLE that are confirmed by individual cohorts, suggesting that susceptibility genes may be identified within each of these loci. Linkage studies and single nucleotide polymorphisms (SNPs) have led to the identification of positional candidate genes, and their functional allelic variants have demonstrated molecular pathogenesis of the disease. The discovery of positional candidate genes that are associated with various autoimmune diseases signifies a common pathway in the mechanism of these diseases. Copy polymorphisms in susceptibility genes provide evidence in how genetic plasticity affects complex phenotypes as seen in SLE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tan EM, Cohen AS, Fires JF et al (1982) Special article: the 1982 revised criteria for the classification of SLE. Arthritis Rheum 25:1271–1277

    PubMed  CAS  Google Scholar 

  2. Hochberg MC (1997) The epidemiology of systemic lupus erythematosus. In: Wallace DJ, Hahn BH (eds) Dubois’ lupus erythematosus. Williams & Wilkins, Baltimore, MD, p 49–65

    Google Scholar 

  3. Alarcon-Segovia D, Alarcon-Riquelme ME, Cardiel MH et al (2005) Familial aggregation of systemic lupus erythematosus, rheumatoid arthritis, and other autoimmune diseases in 1,177 lupus patients from the GLADEL cohort. Arthritis Rheum 52:1138–1147

    Article  PubMed  Google Scholar 

  4. Deapen D, Escalante A, Weinrib L et al. A revised estimate of twin concordance in SLE. Arthritis Rheum 35:311

  5. Gregersen PK (1993) Discordance for autoimmunity in monozygotic twins. Are “identical” twins really identical? Arthritis Rheum 36:1185–1192

    PubMed  CAS  Google Scholar 

  6. Pistiner M, Wallace DJ, Nessim S, Metzger AL, Klinenberg JR (1991) Lupus erythematosus in the 1980s: a survey of 570 patients. Semin Arthritis Rheum 21:55–64

    Article  PubMed  CAS  Google Scholar 

  7. Hochberg MC (1987) The application of genetic epidemiology to systemic lupus erythematosus. J Rheumatol 14:867–869

    PubMed  CAS  Google Scholar 

  8. Priori R, Medda E, Conti F et al (2003) Familial autoimmunity as a risk factor for systemic lupus erythematosus and vice versa: a case-control study. Lupus 12:735–740

    Article  PubMed  CAS  Google Scholar 

  9. Becker KG, Simon RM, Bailey-Wilson JE et al (1998) Clustering of non-major histocompatibility complex susceptibility candidate loci in human autoimmune diseases. Proc Natl Acad Sci USA 95:9979–9984

    Article  PubMed  CAS  Google Scholar 

  10. Ueda H, Howson JM, Esposito L et al (2003) Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature 423:506–511

    Article  PubMed  CAS  Google Scholar 

  11. Krishnan S, Chowdhury B, Tsokos GC (2006) Autoimmunity in systemic lupus erythematosus: integrating genes and biology. Semin Immunol 18(4):230–243

    Article  PubMed  CAS  Google Scholar 

  12. Nishimura H, Honjo T (2001) PD-1: an inhibitory immunoreceptor involved in peripheral tolerance. Trends Immunol 22:265–268

    Article  PubMed  CAS  Google Scholar 

  13. Prokunina L, Castillejo-Lopez C, Oberg F et al (2002) A regulatory polymorphism in PDCD1 is associated with susceptibility to systemic lupus erythematosus in humans. Nat Genet 32:666–669

    Article  PubMed  CAS  Google Scholar 

  14. Nielsen C, Hansen D, Husby S, Jacobsen BB, Lillevang ST (2003) Association of a putative regulatory polymorphism in the PD-1 gene with susceptibility to type 1 diabetes. Tissue Antigens 62:492–497

    Article  PubMed  CAS  Google Scholar 

  15. Shen N, Tsao BP (2004) Current advances in the human lupus genetics. Curr Rheumatol Rep 6:391–398

    PubMed  Google Scholar 

  16. Cloutier JF, Veillette A (1996) Association of inhibitory tyrosine protein kinase p50csk with protein tyrosine phosphatase PEP in T cells and other hemopoietic cells. EMBO J 15:4909–4918

    PubMed  CAS  Google Scholar 

  17. Tsao BP, Wu H (2006) The genetics of human lupus. Dubois’ lupus erythematosus. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  18. Mori M, Yamada R, Kobayashi K, Kawaida R, Yamamoto K (2005) Ethnic differences in allele frequency of autoimmune-disease-associated SNPs. J Hum Genet 50:264–266

    Article  PubMed  Google Scholar 

  19. Bennett L, Palucka AK, Arce E et al (2003) Interferon and granulopoiesis signatures in systemic lupus erythematosus blood. J Exp Med 197:711–723

    Article  PubMed  CAS  Google Scholar 

  20. Machold KP, Smolen JS (1990) Interferon-gamma induced exacerbation of systemic lupus-erythematosus. J Rheumatol 17:831–832

    PubMed  CAS  Google Scholar 

  21. Nakashima H, Inoue H, Akahoshi M et al (1999) The combination of polymorphisms within interferon-gamma receptor 1 and receptor 2 associated with the risk of systemic lupus erythematosus. FEBS Lett 453:187–190

    Article  PubMed  CAS  Google Scholar 

  22. Sigurdsson S, Nordmark G, Goring HH et al (2005) Polymorphisms in the tyrosine kinase 2 and interferon regulatory factor 5 genes are associated with systemic lupus erythematosus. Am J Hum Genet 76:528–537

    Article  PubMed  CAS  Google Scholar 

  23. Namjou B, Nath SK, Kilpatrick J et al (2002) Genome scan stratified by the presence of anti-double-stranded DNA (dsDNA) autoantibody in pedigrees multiplex for systemic lupus erythematosus (SLE) establishes linkages at 19p13.2 (SLED1) and 18q21.1 (SLED2). Genes Immun 3(Suppl 1):S35–S41

    Article  PubMed  CAS  Google Scholar 

  24. Barnes BJ, Richards J, Mancl M, Hanash S, Beretta L, Pitha PM (2004) Global and distinct targets of IRF-5 and IRF-7 during innate response to viral infection. J Biol Chem 279:45194–45207

    Article  PubMed  CAS  Google Scholar 

  25. Takaoka A, Yanai H, Kondo S et al (2005) Integral role of IRF-5 in the gene induction programme activated by Toll-like receptors. Nature 434:243–249

    Article  PubMed  CAS  Google Scholar 

  26. Graham RR, Kozyrev SV, Baechler EC et al (2006) A common haplotype of interferon regulatory factor 5 (IRF5) regulates splicing and expression and is associated with increased risk of systemic lupus erythematosus. Nat Genet 38:550–555

    Article  PubMed  CAS  Google Scholar 

  27. Taniguchi T, Ogasawara K, Takaoka A, Tanaka N (2001) IRF family of transcription factors as regulators of host defense. Annu Rev Immunol 19:623–655

    Article  PubMed  CAS  Google Scholar 

  28. Akahoshi M, Nakashima H, Shirakawa T (2006) Roles of genetic variations in signalling/immunoregulatory molecules in susceptibility to systemic lupus erythematosus. Semin Immunol 18:224–229

    Article  PubMed  CAS  Google Scholar 

  29. Tsao BP (2003) The genetics of human systemic lupus erythematosus. Trends Immunol 24:595–602

    Article  PubMed  CAS  Google Scholar 

  30. Wakeland EK, Liu K, Graham RR, Behrens TW (2001) Delineating the genetic basis of systemic lupus erythematosus. Immunity 15:397–408

    Article  PubMed  CAS  Google Scholar 

  31. Bharadwaj D, Stein MP, Volzer M, Mold C, Du Clos TW (1999) The major receptor for C-reactive protein on leukocytes is fcgamma receptor II. J Exp Med 190:585–590

    Article  PubMed  CAS  Google Scholar 

  32. Russell AI, Cunninghame Graham DS, Shepherd C et al (2004) Polymorphism at the C-reactive protein locus influences gene expression and predisposes to systemic lupus erythematosus. Hum Mol Genet 13:137–147

    Article  PubMed  CAS  Google Scholar 

  33. Rodriguez W, Mold C, Kataranovski M, Hutt J, Marnell LL, Du Clos TW (2005) Reversal of ongoing proteinuria in autoimmune mice by treatment with C-reactive protein. Arthritis Rheum 52:642–650

    Article  PubMed  CAS  Google Scholar 

  34. Salmon JE, Pricop L (2001) Human receptors for immunoglobulin G: key elements in the pathogenesis of rheumatic disease. Arthritis Rheum 44:739–750

    Article  PubMed  CAS  Google Scholar 

  35. Karassa FB, Trikalinos TA, Ioannidis JP (2002) Role of the Fcgamma receptor IIa polymorphism in susceptibility to systemic lupus erythematosus and lupus nephritis: a meta-analysis. Arthritis Rheum 46:1563–1571

    Article  PubMed  CAS  Google Scholar 

  36. Tsao BP (2004) Update on human systemic lupus erythematosus genetics. Curr Opin Rheumatol 16:513–521

    Article  PubMed  CAS  Google Scholar 

  37. Karassa FB, Trikalinos TA, Ioannidis JP (2003) The Fc gamma RIIIA-F158 allele is a risk factor for the development of lupus nephritis: a meta-analysis. Kidney Int 63:1475–1482

    Article  PubMed  CAS  Google Scholar 

  38. Magnusson V, Johanneson B, Lima G, Odeberg J, Alarcon-Segovia D, Alarcon-Riquelme ME, SLE Genetics Collaboration Group (2004) Both risk alleles for FcgammaRIIA and FcgammaRIIIA are susceptibility factors for SLE: a unifying hypothesis. Genes Immun 5:130–137

    Article  PubMed  CAS  Google Scholar 

  39. Sullivan KE, Jawad AF, Piliero LM et al (2003) Analysis of polymorphisms affecting immune complex handling in systemic lupus erythematosus. Rheumatology (Oxford) 42:446–452

    Article  CAS  Google Scholar 

  40. Daeron M (1997) Fc receptor biology. Annu Rev Immunol 15:203–234

    Article  PubMed  CAS  Google Scholar 

  41. Li X, Wu J, Carter RH et al (2003) A novel polymorphism in the Fcgamma receptor IIB (CD32B) transmembrane region alters receptor signaling. Arthritis Rheum 48:3242–3252

    Article  PubMed  CAS  Google Scholar 

  42. Su K, Wu J, Edberg JC et al (2004) A promoter haplotype of the immunoreceptor tyrosine-based inhibitory motif-bearing FcgammaRIIb alters receptor expression and associates with autoimmunity. I. Regulatory FCGR2B polymorphisms and their association with systemic lupus erythematosus. J Immunol 172:7186–7191

    PubMed  CAS  Google Scholar 

  43. Kyogoku C, Dijstelbloem HM, Tsuchiya N et al (2002) Fcgamma receptor gene polymorphisms in Japanese patients with systemic lupus erythematosus: contribution of FCGR2B to genetic susceptibility. Arthritis Rheum 46:1242–1254

    Article  PubMed  CAS  Google Scholar 

  44. Aitman TJ, Dong R, Vyse TJ et al (2006) Copy number polymorphism in Fcgr3 predisposes to glomerulonephritis in rats and humans. Nature 439:851–855

    Article  PubMed  CAS  Google Scholar 

  45. Kochi Y, Yamada R, Suzuki A et al (2005) A functional variant in FCRL3, encoding Fc receptor-like 3, is associated with rheumatoid arthritis and several autoimmunities. Nat Genet 37:478–485

    Article  PubMed  CAS  Google Scholar 

  46. Oliver FJ, Menissier-de Murcia J, de Murcia G (1999) Poly(ADP-ribose) polymerase in the cellular response to DNA damage, apoptosis, and disease. Am J Hum Genet 64:1282–1288

    Article  PubMed  CAS  Google Scholar 

  47. Decker P, Isenberg D, Muller S (2000) Inhibition of caspase-3-mediated poly(ADP-ribose) polymerase (PARP) apoptotic cleavage by human PARP autoantibodies and effect on cells undergoing apoptosis. J Biol Chem 275:9043–9046

    Article  PubMed  CAS  Google Scholar 

  48. Haug BL, Lee JS, Sibley JT (1994) Altered poly-(ADP-ribose) metabolism in family members of patients with systemic lupus erythematosus. J Rheumatol 21:851–856

    PubMed  CAS  Google Scholar 

  49. Tsao BP, Cantor RM, Kalunian KC et al (1997) Evidence for linkage of a candidate chromosome 1 region to human systemic lupus erythematosus. J Clin Invest 99:725–731

    PubMed  CAS  Google Scholar 

  50. Tsao BP, Cantor RM, Grossman JM et al (1999) PARP alleles within the linked chromosomal region are associated with systemic lupus erythematosus. J Clin Invest 103:1135–1140

    PubMed  CAS  Google Scholar 

  51. Oei SL, Shi Y (2001) Poly(ADP-ribosyl)ation of transcription factor Yin Yang 1 under conditions of DNA damage. Biochem Biophys Res Commun 285:27–31

    Article  PubMed  CAS  Google Scholar 

  52. Hur JW, Sung YK, Shin HD, Park BL, Cheong HS, Bae SC (2006) Poly(ADP-ribose) polymerase (PARP) polymorphisms associated with nephritis and arthritis in systemic lupus erythematosus. Rheumatology (Oxford) 45(6):711–717

    Article  CAS  Google Scholar 

  53. Takeda K, Kaisho T, Akira S (2003) Toll-like receptors. Annu Rev Immunol 21:335–376

    Article  PubMed  CAS  Google Scholar 

  54. Hayashi F, Smith KD, Ozinsky A et al (2001) The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410:1099–1103

    Article  PubMed  CAS  Google Scholar 

  55. Hawn TR, Wu H, Grossman JM, Hahn BH, Tsao BP, Aderem A (2005) A stop codon polymorphism of Toll-like receptor 5 is associated with resistance to systemic lupus erythematosus. Proc Natl Acad Sci USA 102:10593–10597

    Article  PubMed  CAS  Google Scholar 

  56. van der Linden MW, van der Slik AR, Zanelli E et al (2001) Six microsatellite markers on the short arm of chromosome 6 in relation to HLA-DR3 and TNF-308A in systemic lupus erythematosus. Genes Immun 2:373–380

    Article  PubMed  CAS  Google Scholar 

  57. Scofield RH, Harley JB (1994) Association of anti-Ro/SS-A autoantibodies with glutamine in position 34 of DQA1 and leucine in position 26 of DQB1. Arthritis Rheum 37:961–962

    PubMed  CAS  Google Scholar 

  58. Taylor PR, Carugati A, Fadok VA et al (2000) A hierarchical role for classical pathway complement proteins in the clearance of apoptotic cells in vivo. J Exp Med 192:359–366

    Article  PubMed  CAS  Google Scholar 

  59. Walport MJ, Davies KA, Botto M (1998) C1q and systemic lupus erythematosus. Immunobiology 199:265–285

    PubMed  CAS  Google Scholar 

  60. Ballow M, McLean RH, Einarson M et al (1979) Hereditary C4 deficiency—genetic studies and linkage to HLA. Transplant Proc 11:1710–1712

    PubMed  CAS  Google Scholar 

  61. Yang Y, Chung EK, Zhou B et al (2004) The intricate role of complement component C4 in human systemic lupus erythematosus. Curr Dir Autoimmun 7:98–132

    Article  PubMed  CAS  Google Scholar 

  62. Johnson CA, Densen P, Hurford RK Jr, Colten HR, Wetsel RA (1993) Type I human complement C2 deficiency. A 28-base pair gene deletion causes skipping of exon 6 during RNA splicing. J Biol Chem 268:2268

    PubMed  CAS  Google Scholar 

  63. Walport MJ (1993) The Roche Rheumatology Prize lecture. Complement deficiency and disease. Br J Rheumatol 32:269–273

    PubMed  CAS  Google Scholar 

  64. Navratil JS, Korb LC, Ahearn JM (1999) Systemic lupus erythematosus and complement deficiency: clues to a novel role for the classical complement pathway in the maintenance of immune tolerance. Immunopharmacology 42:47–52

    Article  PubMed  CAS  Google Scholar 

  65. Nath SK, Harley JB, Lee YH (2005) Polymorphisms of complement receptor 1 and interleukin-10 genes and systemic lupus erythematosus: a meta-analysis. Hum Genet 118(2):225–234

    Article  PubMed  CAS  Google Scholar 

  66. Llorente L, Zou W, Levy Y et al (1995) Role of interleukin 10 in the B lymphocyte hyperactivity and autoantibody production of human systemic lupus erythematosus. J Exp Med 181:839–844

    Article  PubMed  CAS  Google Scholar 

  67. Eskdale J, Gallagher G, Verweij CL, Keijsers V, Westendorp RG, Huizinga TW (1998) Interleukin 10 secretion in relation to human IL-10 locus haplotypes. Proc Natl Acad Sci USA 95:9465–9470

    Article  PubMed  CAS  Google Scholar 

  68. Nath SK, Kilpatrick J, Harley JB (2004) Genetics of human systemic lupus erythematosus: the emerging picture. Curr Opin Immunol 16:794–800

    Article  PubMed  CAS  Google Scholar 

  69. Turner MW (1991) Deficiency of mannan binding protein—a new complement deficiency syndrome. Clin Exp Immun 86(Suppl 1):53–56

    PubMed  CAS  Google Scholar 

  70. Aguilar F, Gonzalez-Escribano MF, Sanchez-Roman J, Nunez-Roldan A (2001) MCP-1 promoter polymorphism in Spanish patients with systemic lupus erythematosus. Tissue Antigens 58:335–338

    Article  PubMed  CAS  Google Scholar 

  71. Rovin BH, Lu L, Saxena R (1999) A novel polymorphism in the MCP-1 gene regulatory region that influences MCP-1 expression. Biochem Biophys Res Commun 259:344–348

    Article  PubMed  CAS  Google Scholar 

  72. Tesch GH, Maifert S, Schwarting A, Rollins BJ, Kelley VR (1999) Monocyte chemoattractant protein 1-dependent leukocytic infiltrates are responsible for autoimmune disease in MRL-Fas(lpr) mice. J Exp Med 190:1813–1824

    Article  PubMed  CAS  Google Scholar 

  73. Zheng L, Fisher G, Miller RE, Peschon J, Lynch DH, Lenardo MJ (1995) Induction of apoptosis in mature T cells by tumour necrosis factor. Nature 377:348–351

    Article  PubMed  CAS  Google Scholar 

  74. Drake CG, Babcock SK, Palmer E, Kotzin BL (1994) Genetic analysis of the NZB contribution to lupus-like autoimmune disease in (NZB × NZW)F1 mice. Proc Natl Acad Sci USA 91:4062–4066

    Article  PubMed  CAS  Google Scholar 

  75. Linker-Israeli M, Wallace DJ, Prehn J, Nand R, Li L, Klinenberg JR (1996) A greater variability in the 3′ flanking region of the IL-6 gene in patients with systemic lupus erythematosus (SLE). Autoimmunity 23:199–209

    PubMed  CAS  Google Scholar 

  76. Tan FK, Arnett FC (1998) The genetics of lupus. Curr Opin Rheumatol 10:399–408

    Article  PubMed  CAS  Google Scholar 

  77. Janeway CAJ, Travers P, Walport M, Shlomchik MJ (2004) Immunobiology: the immune system in health and disease. Garland Science Publishing, New York, pp 183–197

    Google Scholar 

  78. Muhlethaler-Mottet A, Otten LA, Steimle V, Mach B (1997) Expression of MHC class II molecules in different cellular and functional compartments is controlled by differential usage of multiple promoters of the transactivator CIITA. EMBO J 16:2851–2860

    Article  PubMed  CAS  Google Scholar 

  79. Koizumi K, Okamoto H, Iikuni N et al (2005) Single nucleotide polymorphisms in the gene encoding the major histocompatibility complex class II transactivator (CIITA) in systemic lupus erythematosus. Ann Rheum Dis 64:947–950

    Article  PubMed  CAS  Google Scholar 

  80. Tanaka Y, Nakashima H, Hisano C et al (1999) Association of the interferon-gamma receptor variant (Val14Met) with systemic lupus erythematosus. Immunogenetics 49:266–271

    Article  PubMed  CAS  Google Scholar 

  81. Feuk L, Carson AR, Scherer SW (2006) Structural variation in the human genome. Nat Rev Genet 7:85–97

    Article  PubMed  CAS  Google Scholar 

  82. Gonzalez E, Kulkarni H, Bolivar H et al (2005) The influence of CCL3L1 gene-containing segmental duplications on HIV-1/AIDS susceptibility. Science 307:1434–1440

    Article  PubMed  CAS  Google Scholar 

  83. Burns JC, Shimizu C, Gonzalez E et al (2005) Genetic variations in the receptor–ligand pair CCR5 and CCL3L1 are important determinants of susceptibility to Kawasaki disease. J Infect Dis 192:344–349

    Article  PubMed  CAS  Google Scholar 

  84. Pisitkun P, Deane JA, Difilippantonio MJ, Tarasenko T, Satterthwaite AB, Bolland S (2006) Autoreactive B cell responses to RNA-related antigens due to TLR7 gene duplication. Science 312:1669–1672

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grant from the NIH AR43814. We thank Drs. Punchong Hanvivadhanakul and Hui Wu for their invaluable comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Betty P. Tsao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wong, M., Tsao, B.P. Current topics in human SLE genetics. Springer Semin Immun 28, 97–107 (2006). https://doi.org/10.1007/s00281-006-0031-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-006-0031-6

Keywords

Navigation