Skip to main content

Advertisement

Log in

Current status of nanomedicine in the chemotherapy of breast cancer

  • Review Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Despite the efforts that have been made in the field of breast cancer therapy, it is a leading cause of cancer death in women and a major health problem. The current treatments combine several strategies (surgery, radiotherapy, immunotherapy, hormone therapy, and chemotherapy) depending on cancer subtype and tumour stage. The use of chemotherapy is required in certain circumstances, like before or after surgery or in advanced stages of the disease. Chemotherapeutic regimens that include anthracyclines (e.g. doxorubicin), taxanes (e.g. paclitaxel), 5-fluorouracil and/or cyclophosphamide show, in general, a high toxicity that limit their clinical use. The use of targeted chemotherapy allows to get a selective location of the drug at tumour mass, decreasing the toxicity of these treatments. An increase of the antitumour efficacy can also be achieved. The use of nanocarriers containing anticancer drugs can be a good strategy to get targeted chemotherapy. In fact, several nanoformulations containing paclitaxel and doxorubicin have been approved or are under clinical trial for breast cancer therapy. The main advantage of these nanomedicines is their lower toxicity compared to conventional formulations, which can be attributed to the elimination of the solvents of the formulation (e.g. Cremophor-EL in paclitaxel conventional formulations) and the more selective location of the drug at tumour site (e.g. cardiotoxicity related to free doxorubicin). However, some adverse events (e.g. hand foot syndrome or infusion reactions) have been related to the administration of some nanomedicines, which have to be considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA. https://doi.org/10.3322/caac.21492

    Article  PubMed  Google Scholar 

  2. McCann KE, Hurvitz SA, McAndrew N (2019) Advances in targeted therapies for triple-negative breast cancer. Drugs 79(11):1217–1230. https://doi.org/10.1007/s40265-019-01155-4

    Article  PubMed  Google Scholar 

  3. Iqbal J, Abbasi BA, Ahmad R, Mahmood T, Kanwal S, Ali B, Khalil AT, Shah SA, Alam MM, Badshah H (2018) Ursolic acid a promising candidate in the therapeutics of breast cancer: current status and future implications. Biomed Pharmacother Biomedecine & pharmacotherapie 108:752–756. https://doi.org/10.1016/j.biopha.2018.09.096

    Article  CAS  Google Scholar 

  4. Greenlee H, DuPont-Reyes MJ, Balneaves LG, Carlson LE, Cohen MR, Deng G, Johnson JA, Mumber M, Seely D, Zick SM, Boyce LM, Tripathy D (2017) Clinical practice guidelines on the evidence-based use of integrative therapies during and after breast cancer treatment. CA 67(3):194–232. https://doi.org/10.3322/caac.21397

    Article  PubMed  Google Scholar 

  5. Xie X, Zhang Y, Li F, Lv T, Li Z, Chen H, Jia L, Gao Y (2018) Challenges and opportunities from basic cancer biology for nanomedicine for targeted drug delivery. Curr Cancer Drug Targ. https://doi.org/10.2174/1568009618666180628160211

    Article  Google Scholar 

  6. Swetha KL, Roy A (2018) Tumor heterogeneity and nanoparticle-mediated tumor targeting: the importance of delivery system personalization. Drug Deliv Transl Res 8(5):1508–1526. https://doi.org/10.1007/s13346-018-0578-5

    Article  CAS  PubMed  Google Scholar 

  7. Maeda H (2015) Toward a full understanding of the EPR effect in primary and metastatic tumors as well as issues related to its heterogeneity. Adv Drug Deliv Rev 91:3–6. https://doi.org/10.1016/j.addr.2015.01.002

    Article  CAS  PubMed  Google Scholar 

  8. Alibakhshi A, Abarghooi Kahaki F, Ahangarzadeh S, Yaghoobi H, Yarian F, Arezumand R, Ranjbari J, Mokhtarzadeh A, de la Guardia M (2017) Targeted cancer therapy through antibody fragments-decorated nanomedicines. J Control Rel 268:323–334. https://doi.org/10.1016/j.jconrel.2017.10.036

    Article  CAS  Google Scholar 

  9. Uifalean A, Ilies M, Nicoara R, Rus LM, Heghes SC, Iuga CA (2018) Concepts and challenges of biosimilars in breast cancer: the emergence of trastuzumab biosimilars. Pharmaceutics. https://doi.org/10.3390/pharmaceutics10040168

    Article  PubMed  PubMed Central  Google Scholar 

  10. Wu X, Shaikh AB, Yu Y, Li Y, Ni S, Lu A, Zhang G (2017) Potential diagnostic and therapeutic applications of oligonucleotide aptamers in breast cancer. Int J Mol Sci. https://doi.org/10.3390/ijms18091851

    Article  PubMed  PubMed Central  Google Scholar 

  11. Lambert JM, Morris CQ (2017) Antibody-drug conjugates (ADCs) for personalized treatment of solid tumors: a review. Adv Ther 34(5):1015–1035. https://doi.org/10.1007/s12325-017-0519-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhou Q, Zhang L, Yang T, Wu H (2018) Stimuli-responsive polymeric micelles for drug delivery and cancer therapy. Int J Nanomed 13:2921–2942. https://doi.org/10.2147/ijn.s158696

    Article  CAS  Google Scholar 

  13. Nehate C, Jain S, Saneja A, Khare V, Alam N, Dubey RD, Gupta PN (2014) Paclitaxel formulations: challenges and novel delivery options. Curr Drug Deliv 11(6):666–686

    Article  CAS  Google Scholar 

  14. Gelderblom H, Verweij J, Nooter K, Sparreboom A (2001) Cremophor EL: the drawbacks and advantages of vehicle selection for drug formulation. Eur J Cancer (Oxford, England: 1990) 37(13):1590–1598

    Article  CAS  Google Scholar 

  15. Desai N, Trieu V, Yao Z, Louie L, Ci S, Yang A, Tao C, De T, Beals B, Dykes D, Noker P, Yao R, Labao E, Hawkins M, Soon-Shiong P (2006) Increased antitumor activity, intratumor paclitaxel concentrations, and endothelial cell transport of cremophor-free, albumin-bound paclitaxel, ABI-007, compared with cremophor-based paclitaxel. Clin Cancer Res 12(4):1317–1324. https://doi.org/10.1158/1078-0432.ccr-05-1634

    Article  CAS  PubMed  Google Scholar 

  16. Alves RC, Fernandes RP, Eloy JO, Salgado HRN (2018) Characteristics, properties and analytical methods of paclitaxel: a review. Crit Rev Anal Chem 48(2):110–118. https://doi.org/10.1080/10408347.2017.1416283

    Article  CAS  PubMed  Google Scholar 

  17. Du X, Khan AR, Fu M, Ji J, Yu A, Zhai G (2018) Current development in the formulations of non-injection administration of paclitaxel. Int J Pharm 542(1–2):242–252. https://doi.org/10.1016/j.ijpharm.2018.03.030

    Article  CAS  PubMed  Google Scholar 

  18. Liu Y, Ye G, Yan D, Zhang L, Fan F, Feng J (2017) Role of nab-paclitaxel in metastatic breast cancer: a meta-analysis of randomized clinical trials. Oncotarget 8(42):72950–72958. https://doi.org/10.18632/oncotarget.18900

    Article  PubMed  PubMed Central  Google Scholar 

  19. Feng J, Tang L (2014) SPARC in tumor pathophysiology and as a potential therapeutic target. Curr Pharm Des 20(39):6182–6190

    Article  CAS  Google Scholar 

  20. Lluch A, Alvarez I, Munoz M, Segui MA, Tusquets I, Garcia-Estevez L (2014) Treatment innovations for metastatic breast cancer: nanoparticle albumin-bound (NAB) technology targeted to tumors. Crit Rev Oncol/Hematol 89(1):62–72. https://doi.org/10.1016/j.critrevonc.2013.08.001

    Article  Google Scholar 

  21. Oerlemans C, Bult W, Bos M, Storm G, Nijsen JF, Hennink WE (2010) Polymeric micelles in anticancer therapy: targeting, imaging and triggered release. Pharm Res 27(12):2569–2589. https://doi.org/10.1007/s11095-010-0233-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jung JY, Jeong HC, Yoon SS, Lee JH, Kim JS, Kim HJ, Kim KH, Park JO, Lee WS, Heo DS, Bang YJ, Kim NK (2001) A phase II study of Genexol(R) (paclitaxel) in metastatic breast cancer. Cancer Res Treat 33(6):451–457. https://doi.org/10.4143/crt.2001.33.6.451

    Article  CAS  PubMed  Google Scholar 

  23. Lee KS, Chung HC, Im SA, Park YH, Kim CS, Kim SB, Rha SY, Lee MY, Ro J (2008) Multicenter phase II trial of Genexol-PM, a Cremophor-free, polymeric micelle formulation of paclitaxel, in patients with metastatic breast cancer. Breast Cancer Res Treat 108(2):241–250. https://doi.org/10.1007/s10549-007-9591-y

    Article  CAS  PubMed  Google Scholar 

  24. Lee J, Kim J, Chang E, Choi W, Lee K, Yoon H, Jung S, Park M, Yoon J, Kim S (2014) A phase II trial of neoadjuvant chemotherapy with genexol(r) (paclitaxel) and epirubicin for locally advanced breast cancer. J Breast Cancer 17(4):344–349. https://doi.org/10.4048/jbc.2014.17.4.344

    Article  PubMed  PubMed Central  Google Scholar 

  25. Park IH, Sohn JH, Kim SB, Lee KS, Chung JS, Lee SH, Kim TY, Jung KH, Cho EK, Kim YS, Song HS, Seo JH, Ryoo HM, Lee SA, Yoon SY, Kim CS, Kim YT, Kim SY, Jin MR, Ro J (2017) An open-label, randomized, parallel, phase III trial evaluating the efficacy and safety of polymeric micelle-formulated paclitaxel compared to conventional cremophor EL-based paclitaxel for recurrent or metastatic HER2-negative breast cancer. Cancer Res Treat 49(3):569–577. https://doi.org/10.4143/crt.2016.289

    Article  CAS  PubMed  Google Scholar 

  26. Bernabeu E, Cagel M, Lagomarsino E, Moretton M, Chiappetta DA (2017) Paclitaxel: what has been done and the challenges remain ahead. Int J Pharm 526(1–2):474–495. https://doi.org/10.1016/j.ijpharm.2017.05.016

    Article  CAS  PubMed  Google Scholar 

  27. Madaan A, Singh P, Awasthi A, Verma R, Singh AT, Jaggi M, Mishra SK, Kulkarni S, Kulkarni H (2013) Efficiency and mechanism of intracellular paclitaxel delivery by novel nanopolymer-based tumor-targeted delivery system, Nanoxel(TM). Clin Transl Oncol 15(1):26–32. https://doi.org/10.1007/s12094-012-0883-2

    Article  CAS  PubMed  Google Scholar 

  28. Giodini L, Re FL, Campagnol D, Marangon E, Posocco B, Dreussi E, Toffoli G (2017) Nanocarriers in cancer clinical practice: a pharmacokinetic issue. Nanomed Nanotechnol Biol Med 13(2):583–599. https://doi.org/10.1016/j.nano.2016.07.012

    Article  CAS  Google Scholar 

  29. Brahmachari B, Hazra A, Majumdar A (2011) Adverse drug reaction profile of nanoparticle versus conventional formulation of paclitaxel: an observational study. Indian J Pharmacol 43(2):126–130. https://doi.org/10.4103/0253-7613.77341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ranade AA, Joshi DA, Phadke GK, Patil PP, Kasbekar RB, Apte TG, Dasare RR, Mengde SD, Parikh PM, Bhattacharyya GS, Lopes GL (2013) Clinical and economic implications of the use of nanoparticle paclitaxel (Nanoxel) in India. Ann Oncol 24(Suppl 5):v6–12. https://doi.org/10.1093/annonc/mdt322

    Article  PubMed  Google Scholar 

  31. Zhang Q, Huang XE, Gao LL (2009) A clinical study on the premedication of paclitaxel liposome in the treatment of solid tumors. Biomed Pharmacother Biomedecine & pharmacotherapie 63(8):603–607. https://doi.org/10.1016/j.biopha.2008.10.001

    Article  CAS  Google Scholar 

  32. Ye L, He J, Hu Z, Dong Q, Wang H, Fu F, Tian J (2013) Antitumor effect and toxicity of Lipusu in rat ovarian cancer xenografts. Food Chem Toxicol 52:200–206. https://doi.org/10.1016/j.fct.2012.11.004

    Article  CAS  PubMed  Google Scholar 

  33. Wang H, Cheng G, Du Y, Ye L, Chen W, Zhang L, Wang T, Tian J, Fu F (2013) Hypersensitivity reaction studies of a polyethoxylated castor oil-free, liposome-based alternative paclitaxel formulation. Mol Med Rep 7(3):947–952. https://doi.org/10.3892/mmr.2013.1264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Asensio-Lopez MC, Soler F, Pascual-Figal D, Fernandez-Belda F, Lax A (2017) Doxorubicin-induced oxidative stress: the protective effect of nicorandil on HL-1 cardiomyocytes. PLoS One 12(2):e0172803. https://doi.org/10.1371/journal.pone.0172803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Luu AZ, Chowdhury B, Al-Omran M, Teoh H, Hess DA, Verma S (2018) Role of endothelium in doxorubicin-induced cardiomyopathy. JACC Basic Transl Sci 3(6):861–870. https://doi.org/10.1016/j.jacbts.2018.06.005

    Article  PubMed  PubMed Central  Google Scholar 

  36. Gabizon AA, Patil Y, La-Beck NM (2016) New insights and evolving role of pegylated liposomal doxorubicin in cancer therapy. Drug Resist Updates 29:90–106. https://doi.org/10.1016/j.drup.2016.10.003

    Article  Google Scholar 

  37. Yang A, Liu W, Li Z, Jiang L, Xu H, Yang X (2010) Influence of polyethyleneglycol modification on phagocytic uptake of polymeric nanoparticles mediated by immunoglobulin G and complement activation. J Nanosci Nanotechnol 10(1):622–628

    Article  CAS  Google Scholar 

  38. Gubernator J (2011) Active methods of drug loading into liposomes: recent strategies for stable drug entrapment and increased in vivo activity. Expert Opin Drug Deliv 8(5):565–580. https://doi.org/10.1517/17425247.2011.566552

    Article  CAS  PubMed  Google Scholar 

  39. Tahover E, Patil YP, Gabizon AA (2015) Emerging delivery systems to reduce doxorubicin cardiotoxicity and improve therapeutic index: focus on liposomes. Anticancer Drugs 26(3):241–258. https://doi.org/10.1097/cad.0000000000000182

    Article  CAS  PubMed  Google Scholar 

  40. Luo R, Li Y, He M, Zhang H, Yuan H, Johnson M, Palmisano M, Zhou S, Sun D (2017) Distinct biodistribution of doxorubicin and the altered dispositions mediated by different liposomal formulations. Int J Pharm 519(1–2):1–10. https://doi.org/10.1016/j.ijpharm.2017.01.002

    Article  CAS  PubMed  Google Scholar 

  41. Dong M, Luo L, Ying X, Lu X, Shen J, Jiang Z, Wang L (2018) Comparable efficacy and less toxicity of pegylated liposomal doxorubicin versus epirubicin for neoadjuvant chemotherapy of breast cancer: a case-control study. OncoTarg Ther 11:4247–4252. https://doi.org/10.2147/ott.s162003

    Article  CAS  Google Scholar 

  42. Alibolandi M, Abnous K, Mohammadi M, Hadizadeh F, Sadeghi F, Taghavi S, Jaafari MR, Ramezani M (2017) Extensive preclinical investigation of polymersomal formulation of doxorubicin versus Doxil-mimic formulation. J Control Rel 264:228–236. https://doi.org/10.1016/j.jconrel.2017.08.030

    Article  CAS  Google Scholar 

  43. Szebeni J, Muggia F, Gabizon A, Barenholz Y (2011) Activation of complement by therapeutic liposomes and other lipid excipient-based therapeutic products: prediction and prevention. Adv Drug Deliv Rev 63(12):1020–1030. https://doi.org/10.1016/j.addr.2011.06.017

    Article  CAS  PubMed  Google Scholar 

  44. Staropoli N, Ciliberto D, Botta C, Fiorillo L, Grimaldi A, Lama S, Caraglia M, Salvino A, Tassone P, Tagliaferri P (2014) Pegylated liposomal doxorubicin in the management of ovarian cancer: a systematic review and metaanalysis of randomized trials. Cancer Biol Ther 15(6):707–720. https://doi.org/10.4161/cbt.28557

    Article  PubMed  PubMed Central  Google Scholar 

  45. Rayson D, Suter TM, Jackisch C, van der Vegt S, Bermejo B, van den Bosch J, Vivanco GL, van Gent AM, Wildiers H, Torres A, Provencher L, Temizkan M, Chirgwin J, Canon JL, Ferrandina G, Srinivasan S, Zhang L, Richel DJ (2012) Cardiac safety of adjuvant pegylated liposomal doxorubicin with concurrent trastuzumab: a randomized phase II trial. Ann Oncol 23(7):1780–1788. https://doi.org/10.1093/annonc/mdr519

    Article  CAS  PubMed  Google Scholar 

  46. Rocca A, Cecconetto L, Passardi A, Melegari E, Andreis D, Monti M, Maltoni R, Sarti S, Pietri E, Schirone A, Fabbri F, Donati C, Nanni O, Fedeli A, Faedi M, Amadori D (2017) Phase Ib dose-finding trial of lapatinib plus pegylated liposomal doxorubicin in advanced HER2-positive breast cancer. Cancer Chemother Pharmacol 79(5):863–871. https://doi.org/10.1007/s00280-017-3279-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Torrisi R, Cardillo A, Cancello G, Dellapasqua S, Balduzzi A, Ghisini R, Luini A, Veronesi P, Viale G, Goldhirsch A, Colleoni M (2010) Phase II trial of combination of pegylated liposomal doxorubicin, cisplatin, and infusional 5-fluorouracil (CCF) plus trastuzumab as preoperative treatment for locally advanced and inflammatory breast cancer. Clin Breast Cancer 10(6):483–488. https://doi.org/10.3816/CBC.2010.n.064

    Article  CAS  PubMed  Google Scholar 

  48. Gil-Gil MJ, Bellet M, Morales S, Ojeda B, Manso L, Mesia C, Garcia-Martinez E, Martinez-Janez N, Mele M, Llombart A, Pernas S, Villagrasa P, Blasco C, Baselga J (2015) Pegylated liposomal doxorubicin plus cyclophosphamide followed by paclitaxel as primary chemotherapy in elderly or cardiotoxicity-prone patients with high-risk breast cancer: results of the phase II CAPRICE study. Breast Cancer Res Treat 151(3):597–606. https://doi.org/10.1007/s10549-015-3415-2

    Article  CAS  PubMed  Google Scholar 

  49. Rossi D, Baldelli AM, Casadei V, Fedeli SL, Alessandroni P, Catalano V, Giordani P, Ceccolini M, Graziano F, Catalano G (2008) Neoadjuvant chemotherapy with low dose of pegylated liposomal doxorubicin plus weekly paclitaxel in operable and locally advanced breast cancer. Anticancer Drugs 19(7):733–737. https://doi.org/10.1097/CAD.0b013e3283043585

    Article  CAS  PubMed  Google Scholar 

  50. Dellapasqua S, Mazza M, Rosa D, Ghisini R, Scarano E, Torrisi R, Maisonneuve P, Viale G, Cassano E, Veronesi P, Luini A, Goldhirsch A, Colleoni M (2011) Pegylated liposomal doxorubicin in combination with low-dose metronomic cyclophosphamide as preoperative treatment for patients with locally advanced breast cancer. Breast (Edinburgh, Scotland) 20(4):319–323. https://doi.org/10.1016/j.breast.2011.02.014

    Article  Google Scholar 

  51. Martin-Romano P, Baraibar I, Espinos J, Legaspi J, Lopez-Picazo JM, Aramendia JM, Fernandez OA, Santisteban M (2018) Combination of pegylated liposomal doxorubicin plus gemcitabine in heavily pretreated metastatic breast cancer patients: long-term results from a single institution experience. Breast J 24(4):473–479. https://doi.org/10.1111/tbj.12975

    Article  CAS  PubMed  Google Scholar 

  52. Bulbake U, Doppalapudi S, Kommineni N, Khan W (2017) Liposomal formulations in clinical use: an updated review. Pharmaceutics. https://doi.org/10.3390/pharmaceutics9020012

    Article  PubMed  PubMed Central  Google Scholar 

  53. Batist G, Ramakrishnan G, Rao CS, Chandrasekharan A, Gutheil J, Guthrie T, Shah P, Khojasteh A, Nair MK, Hoelzer K, Tkaczuk K, Park YC, Lee LW (2001) Reduced cardiotoxicity and preserved antitumor efficacy of liposome-encapsulated doxorubicin and cyclophosphamide compared with conventional doxorubicin and cyclophosphamide in a randomized, multicenter trial of metastatic breast cancer. J Clin Oncol 19(5):1444–1454. https://doi.org/10.1200/jco.2001.19.5.1444

    Article  CAS  PubMed  Google Scholar 

  54. Nardecchia S, Sanchez-Moreno P, Vicente J, Marchal JA, Boulaiz H (2019) Clinical trials of thermosensitive nanomaterials: an overview. Nanomaterials (Basel, Switzerland). https://doi.org/10.3390/nano9020191

    Article  Google Scholar 

  55. Lorusso V, Giotta F, Bordonaro R, Maiello E, Del Prete S, Gebbia V, Filippelli G, Pisconti S, Cinieri S, Romito S, Riccardi F, Forcignano R, Ciccarese M, Petrucelli L, Saracino V, Lupo LI, Gambino A, Leo S, Colucci G (2014) Non-pegylated liposome-encapsulated doxorubicin citrate plus cyclophosphamide or vinorelbine in metastatic breast cancer not previously treated with chemotherapy: a multicenter phase III study. Int J Oncol 45(5):2137–2142. https://doi.org/10.3892/ijo.2014.2604

    Article  CAS  PubMed  Google Scholar 

  56. Venturini M, Bighin C, Puglisi F, Olmeo N, Aitini E, Colucci G, Garrone O, Paccagnella A, Marini G, Crino L, Mansutti M, Baconnet B, Barbato A, Del Mastro L (2010) A multicentre Phase II study of non-pegylated liposomal doxorubicin in combination with trastuzumab and docetaxel as first-line therapy in metastatic breast cancer. Breast (Edinburgh, Scotland) 19(5):333–338. https://doi.org/10.1016/j.breast.2010.01.018

    Article  CAS  Google Scholar 

  57. Rosati MS, Raimondi C, Baciarello G, Grassi P, Giovannoni S, Petrelli E, Basile ML, Girolami M, Di Seri M, Frati L (2011) Weekly combination of non-pegylated liposomal doxorubicin and taxane in first-line breast cancer: wALT trial (phase I–II). Ann Oncol 22(2):315–320. https://doi.org/10.1093/annonc/mdq392

    Article  CAS  PubMed  Google Scholar 

  58. Amadori D, Milandri C, Comella G, Saracchini S, Salvagni S, Barone C, Bordonaro R, Gebbia V, Barbato A, Serra P, Gattuso D, Nanni O, Baconnet B, Gasparini G (2011) A phase I/II trial of non-pegylated liposomal doxorubicin, docetaxel and trastuzumab as first-line treatment in HER-2-positive locally advanced or metastatic breast cancer. Eur J Cancer (Oxford, England: 1990) 47(14):2091–2098. https://doi.org/10.1016/j.ejca.2011.05.005

    Article  CAS  Google Scholar 

  59. Curtit E, Nouyrigat P, Dohollou N, Levy E, Lortholary A, Gligorov J, Facchini T, Jaubert D, Maille N, Pivot X, Grange V, Cals L (2011) Myotax: a phase II trial of docetaxel plus non-pegylated liposomal doxorubicin as first-line therapy of metastatic breast cancer previously treated with adjuvant anthracyclines. Eur J Cancer (Oxford, England: 1990) 47(16):2396–2402. https://doi.org/10.1016/j.ejca.2011.08.004

    Article  CAS  Google Scholar 

  60. Slingerland M, Guchelaar HJ, Rosing H, Scheulen ME, van Warmerdam LJ, Beijnen JH, Gelderblom H (2013) Bioequivalence of Liposome-Entrapped Paclitaxel Easy-To-Use (LEP-ETU) formulation and paclitaxel in polyethoxylated castor oil: a randomized, two-period crossover study in patients with advanced cancer. Clin Ther 35(12):1946–1954. https://doi.org/10.1016/j.clinthera.2013.10.009

    Article  CAS  PubMed  Google Scholar 

  61. Fetterly GJ, Grasela TH, Sherman JW, Dul JL, Grahn A, Lecomte D, Fiedler-Kelly J, Damjanov N, Fishman M, Kane MP, Rubin EH, Tan AR (2008) Pharmacokinetic/pharmacodynamic modeling and simulation of neutropenia during phase I development of liposome-entrapped paclitaxel. Clin Cancer Res 14(18):5856–5863. https://doi.org/10.1158/1078-0432.ccr-08-1046

    Article  CAS  PubMed  Google Scholar 

  62. Christopeit M, Lenz G, Forstpointner R, Bartelheim K, Kuhnbach R, Naujoks K, Schalhorn A (2008) Nine months to progression using fourth-line liposomally encapsulated paclitaxel against hepatocellular carcinoma. Chemotherapy 54(4):309–314. https://doi.org/10.1159/000151352

    Article  CAS  PubMed  Google Scholar 

  63. Strieth S, Dunau C, Michaelis U, Jager L, Gellrich D, Wollenberg B, Dellian M (2014) Phase I/II clinical study on safety and antivascular effects of paclitaxel encapsulated in cationic liposomes for targeted therapy in advanced head and neck cancer. Head Neck 36(7):976–984. https://doi.org/10.1002/hed.23397

    Article  PubMed  Google Scholar 

  64. Awada A, Bondarenko IN, Bonneterre J, Nowara E, Ferrero JM, Bakshi AV, Wilke C, Piccart M (2014) A randomized controlled phase II trial of a novel composition of paclitaxel embedded into neutral and cationic lipids targeting tumor endothelial cells in advanced triple-negative breast cancer (TNBC). Ann Oncol 25(4):824–831. https://doi.org/10.1093/annonc/mdu025

    Article  CAS  PubMed  Google Scholar 

  65. Ignatiadis M, Zardavas D, Lemort M, Wilke C, Vanderbeeken MC, D’Hondt V, De Azambuja E, Gombos A, Lebrun F, Dal Lago L, Bustin F, Maetens M, Ameye L, Veys I, Michiels S, Paesmans M, Larsimont D, Sotiriou C, Nogaret JM, Piccart M, Awada A (2016) Feasibility study of EndoTAG-1, a tumor endothelial targeting agent, in combination with paclitaxel followed by FEC as induction therapy in HER2-negative breast cancer. PLoS One 11(7):e0154009. https://doi.org/10.1371/journal.pone.0154009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Caruso F, Hyeon T, Rotello VM (2012) Nanomedicine. Chem Soc Rev 41(7):2537–2538. https://doi.org/10.1039/c2cs90005j

    Article  CAS  PubMed  Google Scholar 

  67. Hamaguchi T, Kato K, Yasui H, Morizane C, Ikeda M, Ueno H, Muro K, Yamada Y, Okusaka T, Shirao K, Shimada Y, Nakahama H, Matsumura Y (2007) A phase I and pharmacokinetic study of NK105, a paclitaxel-incorporating micellar nanoparticle formulation. Br J Cancer 97(2):170–176. https://doi.org/10.1038/sj.bjc.6603855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kato K, Chin K, Yoshikawa T, Yamaguchi K, Tsuji Y, Esaki T, Sakai K, Kimura M, Hamaguchi T, Shimada Y, Matsumura Y, Ikeda R (2012) Phase II study of NK105, a paclitaxel-incorporating micellar nanoparticle, for previously treated advanced or recurrent gastric cancer. Invest New Drugs 30(4):1621–1627. https://doi.org/10.1007/s10637-011-9709-2

    Article  CAS  PubMed  Google Scholar 

  69. Svenson S (2014) What nanomedicine in the clinic right now really forms nanoparticles? Wiley Interdiscipl Rev Nanomed Nanobiotechnol 6(2):125–135. https://doi.org/10.1002/wnan.1257

    Article  CAS  Google Scholar 

  70. Yang D, Yu L, Van S (2010) Clinically relevant anticancer polymer Paclitaxel therapeutics. Cancers 3(1):17–42. https://doi.org/10.3390/cancers3010017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Mukai H, Kato K, Esaki T, Ohsumi S, Hozomi Y, Matsubara N, Hamaguchi T, Matsumura Y, Goda R, Hirai T, Nambu Y (2016) Phase I study of NK105, a nanomicellar paclitaxel formulation, administered on a weekly schedule in patients with solid tumors. Invest New Drugs 34(6):750–759. https://doi.org/10.1007/s10637-016-0381-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Fujiwara Y, Mukai H, Saeki T, Ro J, Lin YC, Nagai SE, Lee KS, Watanabe J, Ohtani S, Kim SB, Kuroi K, Tsugawa K, Tokuda Y, Iwata H, Park YH, Yang Y, Nambu Y (2019) A multi-national, randomised, open-label, parallel, phase III non-inferiority study comparing NK105 and paclitaxel in metastatic or recurrent breast cancer patients. Br J Cancer. https://doi.org/10.1038/s41416-019-0391-z

    Article  PubMed  PubMed Central  Google Scholar 

  73. Poon RT, Borys N (2011) Lyso-thermosensitive liposomal doxorubicin: an adjuvant to increase the cure rate of radiofrequency ablation in liver cancer. Future Oncol (London, England) 7(8):937–945. https://doi.org/10.2217/fon.11.73

    Article  CAS  Google Scholar 

  74. Lencioni R, Tak W-Y, Chen MH, Finn RS, Sherman M, Makris L, O’Neal M, Simonich W, Haemmerich D, Reed R, Borys N, Poon RTP, Abou-Alfa GK (2014) Standardized radiofrequency ablation (sRFA) ≥ 45 minutes (m) plus lyso-thermosensitive liposomal doxorubicin (LTLD) for solitary hepatocellular carcinoma (HCC) lesions 3–7 cm: a retrospective analysis of phase III HEAT study. J Clin Oncol 32(15_suppl):e15143–e15143. https://doi.org/10.1200/jco.2014.32.15_suppl.e15143

    Article  Google Scholar 

  75. Mamot C, Ritschard R, Wicki A, Stehle G, Dieterle T, Bubendorf L, Hilker C, Deuster S, Herrmann R, Rochlitz C (2012) Tolerability, safety, pharmacokinetics, and efficacy of doxorubicin-loaded anti-EGFR immunoliposomes in advanced solid tumours: a phase 1 dose-escalation study. Lancet Oncol 13(12):1234–1241. https://doi.org/10.1016/s1470-2045(12)70476-x

    Article  CAS  PubMed  Google Scholar 

  76. Thomas CJ, Rahier NJ, Hecht SM (2004) Camptothecin: current perspectives. Bioorg Med Chem 12(7):1585–1604. https://doi.org/10.1016/j.bmc.2003.11.036

    Article  CAS  PubMed  Google Scholar 

  77. Numbenjapon T, Wang J, Colcher D, Schluep T, Davis ME, Duringer J, Kretzner L, Yen Y, Forman SJ, Raubitschek A (2009) Preclinical results of camptothecin-polymer conjugate (IT-101) in multiple human lymphoma xenograft models. Clin Cancer Res 15(13):4365–4373. https://doi.org/10.1158/1078-0432.ccr-08-2619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Pham E, Yin M, Peters CG, Lee CR, Brown D, Xu P, Man S, Jayaraman L, Rohde E, Chow A, Lazarus D, Eliasof S, Foster FS, Kerbel RS (2016) Preclinical efficacy of bevacizumab with CRLX101, an investigational nanoparticle-drug conjugate, in treatment of metastatic triple-negative breast cancer. Can Res 76(15):4493–4503. https://doi.org/10.1158/0008-5472.can-15-3435

    Article  CAS  Google Scholar 

  79. Weiss GJ, Chao J, Neidhart JD, Ramanathan RK, Bassett D, Neidhart JA, Choi CHJ, Chow W, Chung V, Forman SJ, Garmey E, Hwang J, Kalinoski DL, Koczywas M, Longmate J, Melton RJ, Morgan R, Oliver J, Peterkin JJ, Ryan JL, Schluep T, Synold TW, Twardowski P, Davis ME, Yen Y (2013) First-in-human phase 1/2a trial of CRLX101, a cyclodextrin-containing polymer-camptothecin nanopharmaceutical in patients with advanced solid tumor malignancies. Invest New Drugs 31(4):986–1000. https://doi.org/10.1007/s10637-012-9921-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Fujita K, Kubota Y, Ishida H, Sasaki Y (2015) Irinotecan, a key chemotherapeutic drug for metastatic colorectal cancer. World J Gastroenterol 21(43):12234–12248. https://doi.org/10.3748/wjg.v21.i43.12234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Burris HA, Infante JR, Anthony Greco F, Thompson DS, Barton JH, Bendell JC, Nambu Y, Watanabe N, Jones SF (2016) A phase I dose escalation study of NK012, an SN-38 incorporating macromolecular polymeric micelle. Cancer Chemother Pharmacol 77(5):1079–1086. https://doi.org/10.1007/s00280-016-2986-x

    Article  CAS  PubMed  Google Scholar 

  82. Harvey V, Mouridsen H, Semiglazov V, Jakobsen E, Voznyi E, Robinson BA, Groult V, Murawsky M, Cold S (2006) Phase III trial comparing three doses of docetaxel for second-line treatment of advanced breast cancer. J Clin Oncol 24(31):4963–4970. https://doi.org/10.1200/jco.2005.05.0294

    Article  CAS  PubMed  Google Scholar 

  83. Posner MR, Hershock DM, Blajman CR, Mickiewicz E, Winquist E, Gorbounova V, Tjulandin S, Shin DM, Cullen K, Ervin TJ, Murphy BA, Raez LE, Cohen RB, Spaulding M, Tishler RB, Roth B, Viroglio RdC, Venkatesan V, Romanov I, Agarwala S, Harter KW, Dugan M, Cmelak A, Markoe AM, Read PW, Steinbrenner L, Colevas AD, Norris CM, Haddad RI (2007) Cisplatin and fluorouracil alone or with docetaxel in head and neck cancer. N Engl J Med 357(17):1705–1715. https://doi.org/10.1056/NEJMoa070956

    Article  CAS  PubMed  Google Scholar 

  84. Deeken JF, Slack R, Weiss GJ, Ramanathan RK, Pishvaian MJ, Hwang J, Lewandowski K, Subramaniam D, He AR, Cotarla I, Rahman A, Marshall JL (2013) A phase I study of liposomal-encapsulated docetaxel (LE-DT) in patients with advanced solid tumor malignancies. Cancer Chemother Pharmacol 71(3):627–633. https://doi.org/10.1007/s00280-012-2048-y

    Article  CAS  PubMed  Google Scholar 

  85. Jakobsen EH, Nielsen D, Danoe H, Linnet S, Hansen J, Lassen UN, Balslev E, Glavicic V, Bogovic J, Knudsen S, Ejlertsen B, Knoop AS, Buhl UH, Madsen MW, Buhl IK, Hansen A, Jensen T, Rasmussen A, Jensen PB, Langkjer ST (2018) Liposomal cisplatin response prediction in heavily pretreated breast cancer patients: A multigene biomarker in a prospective phase 2 study. J Clin Oncol 36(15_suppl):e13077–e13077. https://doi.org/10.1200/jco.2018.36.15_suppl.e13077

    Article  Google Scholar 

  86. Falagan-Lotsch P, Grzincic EM, Murphy CJ (2017) New advances in nanotechnology-based diagnosis and therapeutics for breast cancer: an assessment of active-targeting inorganic nanoplatforms. Bioconjug Chem 28(1):135–152. https://doi.org/10.1021/acs.bioconjchem.6b00591

    Article  CAS  PubMed  Google Scholar 

  87. Yu K, Zhao J, Zhang Z, Gao Y, Zhou Y, Teng L, Li Y (2016) Enhanced delivery of Paclitaxel using electrostatically-conjugated Herceptin-bearing PEI/PLGA nanoparticles against HER-positive breast cancer cells. Int J Pharm 497(1–2):78–87. https://doi.org/10.1016/j.ijpharm.2015.11.033

    Article  CAS  PubMed  Google Scholar 

  88. Yang T, Choi MK, Cui FD, Lee SJ, Chung SJ, Shim CK, Kim DD (2007) Antitumor effect of paclitaxel-loaded PEGylated immunoliposomes against human breast cancer cells. Pharm Res 24(12):2402–2411. https://doi.org/10.1007/s11095-007-9425-y

    Article  CAS  PubMed  Google Scholar 

  89. Varshosaz J, Davoudi MA, Rasoul-Amini S (2018) Docetaxel-loaded nanostructured lipid carriers functionalized with trastuzumab (Herceptin) for HER2-positive breast cancer cells. J Liposome Res 28(4):285–295. https://doi.org/10.1080/08982104.2017.1370471

    Article  CAS  PubMed  Google Scholar 

  90. Nguyen HT, Tran TH, Thapa RK, Phung CD, Shin BS, Jeong JH, Choi HG, Yong CS, Kim JO (2017) Targeted co-delivery of polypyrrole and rapamycin by trastuzumab-conjugated liposomes for combined chemo-photothermal therapy. Int J Pharm 527(1–2):61–71. https://doi.org/10.1016/j.ijpharm.2017.05.034

    Article  CAS  PubMed  Google Scholar 

  91. Shin DH, Koo MJ, Kim JS, Kim JS (2016) Herceptin-conjugated temperature-sensitive immunoliposomes encapsulating gemcitabine for breast cancer. Arch Pharmacal Res 39(3):350–358. https://doi.org/10.1007/s12272-016-0707-y

    Article  CAS  Google Scholar 

  92. Tang Y, Soroush F, Tong Z, Kiani MF, Wang B (2017) Targeted multidrug delivery system to overcome chemoresistance in breast cancer. Int J Nanomed 12:671–681. https://doi.org/10.2147/ijn.s124770

    Article  CAS  Google Scholar 

  93. Eloy JO, Petrilli R, Chesca DL, Saggioro FP, Lee RJ, Marchetti JM (2017) Anti-HER2 immunoliposomes for co-delivery of paclitaxel and rapamycin for breast cancer therapy. Eur J Pharm Biopharm 115:159–167. https://doi.org/10.1016/j.ejpb.2017.02.020

    Article  CAS  PubMed  Google Scholar 

  94. Chen C, Hu H, Qiao M, Zhao X, Wang Y, Chen K, Chen D (2015) Anti-tumor activity of paclitaxel through dual-targeting lipoprotein-mimicking nanocarrier. J Drug Targ 23(4):311–322. https://doi.org/10.3109/1061186x.2014.994182

    Article  CAS  Google Scholar 

  95. Soe ZC, Kwon JB, Thapa RK, Ou W, Nguyen HT, Gautam M, Oh KT, Choi HG, Ku SK, Yong CS, Kim JO (2019) Transferrin-conjugated polymeric nanoparticle for receptor-mediated delivery of doxorubicin in doxorubicin-resistant breast cancer cells. Pharmaceutics 11(2):2. https://doi.org/10.3390/pharmaceutics11020063

    Article  Google Scholar 

  96. Chida T, Miura Y, Cabral H, Nomoto T, Kataoka K, Nishiyama N (2018) Epirubicin-loaded polymeric micelles effectively treat axillary lymph nodes metastasis of breast cancer through selective accumulation and pH-triggered drug release. J Control Rel 292:130–140. https://doi.org/10.1016/j.jconrel.2018.10.035

    Article  CAS  Google Scholar 

  97. Yang H, Shen W, Liu W, Chen L, Zhang P, Xiao C, Chen X (2018) PEGylated poly(alpha-lipoic acid) loaded with doxorubicin as a pH and reduction dual responsive nanomedicine for breast cancer therapy. Biomacromol 19(11):4492–4503. https://doi.org/10.1021/acs.biomac.8b01394

    Article  CAS  Google Scholar 

  98. Zhang H, Gong W, Wang ZY, Yuan SJ, Xie XY, Yang YF, Yang Y, Wang SS, Yang DX, Xuan ZX, Mei XG (2014) Preparation, characterization, and pharmacodynamics of thermosensitive liposomes containing docetaxel. J Pharm Sci 103(7):2177–2183. https://doi.org/10.1002/jps.24019

    Article  CAS  PubMed  Google Scholar 

  99. Shemesh CS, Moshkelani D, Zhang H (2015) Thermosensitive liposome formulated indocyanine green for near-infrared triggered photodynamic therapy: in vivo evaluation for triple-negative breast cancer. Pharm Res 32(5):1604–1614. https://doi.org/10.1007/s11095-014-1560-7

    Article  CAS  PubMed  Google Scholar 

  100. Kumar A, Lale SV, Aji Alex MR, Choudhary V, Koul V (2017) Folic acid and trastuzumab conjugated redox responsive random multiblock copolymeric nanocarriers for breast cancer therapy: in-vitro and in vivo studies. Colloids Surf B 149:369–378. https://doi.org/10.1016/j.colsurfb.2016.10.044

    Article  CAS  Google Scholar 

Download references

Acknowledgements

A. I. Fraguas-Sánchez has been granted a research fellowship (Ref: FPU 14/06441) from the Spanish Ministry of Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Torres-Suárez.

Ethics declarations

Conflict of interest

The authors declare that there are no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fraguas-Sánchez, A.I., Martín-Sabroso, C., Fernández-Carballido, A. et al. Current status of nanomedicine in the chemotherapy of breast cancer. Cancer Chemother Pharmacol 84, 689–706 (2019). https://doi.org/10.1007/s00280-019-03910-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-019-03910-6

Keywords

Navigation