Skip to main content

Advertisement

Log in

The role of apoptosis defects in malignant mesothelioma pathogenesis with an impact on prognosis and treatment

  • Review Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Malignant mesothelioma (MM) is a highly aggressive tumor that is strongly related to asbestos fiber exposure. The tumorigenesis procedure in MM is complex, and many pathogenetic mechanisms including chronic inflammation, deregulation of cell death, and the genomic copy-number losses and gains may contribute to carcinogenesis. MM cells are resistant to TRAIL-mediated apoptosis due to defects in extrinsic apoptotic pathway. CAPS, a regulator of cell cycle and death, may contribute to the MM development as well. BAP1 is the most frequently inactivated gene in MPM; BAP1 deficiency triggers malignant transformation via disruption of DNA repair, transcription regulation, cell metabolism, apoptosis, and ferroptosis. In addition, bcl-2 family proteins as well as abnormal activation of PI3 K/Akt/mTOR pathway and deregulation of the Wnt signaling pathway may result in MM tumorigenesis. Finally, the Hippo pathway plays a critical role in MPM development. Mutations of NF2 and LATS lead to YAP activation in MPM. Thus, inhibition of YAP activity by YAP inhibitors could be a potentially promising treatment option for MM. In conclusion, extensive genetic alterations exist in mesotheliomas associated with the signaling of apoptotic HM cells death. The comprehension of these pathways may contribute to enhancing survival via developing new effective therapeutic strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

MM:

Malignant mesothelioma

HM:

Human mesothelial

HMGB1:

High-mobility group protein B1

MΦs:

Macrophages

IL:

Interleukin

BAL:

Bronchoalveolar lavage

S100-A9:

Calcium- and zinc-binding protein

HSP27:

Heat shock protein 27

MTAP:

Methylthioadenosine phosphorylase

MPM:

Malignant pleural mesothelioma

CFAP45:

Cilia- and flagella-associated protein 45

ULK2:

Unc-51-like kinase 2

RyR2:

Ryanodine receptor

FLIP:

FLICE-like inhibitory protein

ERK:

Extracellular-signal-regulated kinase

EGF:

Epidermal growth factor

CASP1:

Caspase 1

TRAF1:

TNF receptor-associated factor 1

SEMA3E:

Semaphorin 3E

RPS6KA2:

Ribosomal protein S6 kinase alpha-2

ARF:

ADP-ribosylation factor

mcl-1:

Myeloid cell leukemia 1

JNKs:

c-Jun N-terminal kinases

AVEN:

Apoptosis and Caspase Activation Inhibitor

APAF1:

Apoptotic protease activating factor 1

PI3-K:

Phosphatidylinositol-3-kinases

MTOR:

Mammalian target of rapamycin

S6K1:

Ribosomal protein S6 kinase beta-1

MapK:

Mitogen-activated protein kinase

WNT1:

Wnt family member 1

MYC:

MYC Proto-Oncogene

SAPK:

Stress-activated protein kinases

CCND1:

Cyclin D1

SFRP2/4:

Secreted Frizzled-Related Protein 2/4

DKK1:

Dickkopf-related protein 1

MDM2:

Mouse double minute 2 homolog

pRB:

Retinoblastoma protein

SLC7A11:

Solute Carrier Family 7 Member 11

IAP:

Inhibitors of apoptosis proteins

TRAF:

TNF receptor-associated factors

CARP-1:

Cell division cycle and apoptosis regulator protein 1

XAF1:

XIAP-associated factor 1

TROY:

Tumor necrosis factor receptor superfamily, member 19

BIRC5:

Baculoviral IAP Repeat Containing 5

YAP:

Yes-associated protein

ROCK2:

Rho-associated coiled-coil containing protein kinase 2

NF2:

Neurofibromin 2

LATS2:

Large tumor suppressor homolog 2

SAV1:

Salvador homolog 1

RASSF:

Ras-association domain family

TEAD1:

Transcriptional enhancer factor TEF-1

ROCK:

Rho-associated protein kinase

REN:

Neural progenitor cell line

PPIX:

Protoporphyrin IX

RAGE:

Receptor for advanced glycation endproducts

References

  1. Husain AN, Colby TV, Ordonez NG, Krausz T, Borczuk A, Cagle PT et al (2009) Guidelines for pathologic diagnosis of malignant mesothelioma: a consensus statement from the International Mesothelioma Interest Group. Arch Pathol Lab Med 133(8):1317–1331

    PubMed  Google Scholar 

  2. Carbone M, Ly BH, Dodson RF, Pagano I, Morris PT, Dogan UA et al (2012) Malignant mesothelioma: facts, myths, and hypotheses. J Cell Physiol 227(1):44–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Attanoos RL, Churg A, Galateau-Salle F, Gibbs AR, Roggli VL (2018) Malignant mesothelioma and its non-asbestos causes. Arch Pathol Lab Med 142(6):753–760

    Article  CAS  PubMed  Google Scholar 

  4. Galani V, Constantopoulos S, Manda-Stachouli C, Frangou-Lazaridis M, Mavridis A, Vassiliou M et al (2002) Additional proteins in BAL fluid of Metsovites environmentally exposed to asbestos: more evidence of “protection” against neoplasia? Chest 121(1):273–278

    Article  PubMed  Google Scholar 

  5. Yang H, Rivera Z, Jube S, Nasu M, Bertino P, Goparaju C et al (2010) Programmed necrosis induced by asbestos in human mesothelial cells causes high-mobility group box 1 protein release and resultant inflammation. Proc Natl Acad Sci USA 107(28):12611–12616

    Article  PubMed  PubMed Central  Google Scholar 

  6. Carbone M, Yang H (2012) Molecular pathways: targeting mechanisms of asbestos and erionite carcinogenesis in mesothelioma. Clin Cancer Res 18:598–604

    Article  CAS  PubMed  Google Scholar 

  7. Whiteside TL (2008) The tumor microenvironment and its role in promoting tumor growth. Oncogene 27:5904–5912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mantovani A, Biswas SK, Galdiero MR, Sica A, Locati M (2013) Macrophage plasticity and polarization in tissue repair and remodelling. J Pathol 229:176–185

    Article  CAS  PubMed  Google Scholar 

  9. Noy R, Pollard JW (2014) Tumor-associated macrophages: from mechanisms to therapy. Immunity 41:49–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Burt BM, Rodig SJ, Tilleman TR, Elbardissi AW, Bueno R, Sugarbaker DJ (2011) Circulating and tumor-infiltrating myeloid cells predict survival in human pleural mesothelioma. Cancer 117:5234–5244

    Article  CAS  PubMed  Google Scholar 

  11. Archimandriti DT, Dalavanga YA, Cianti R, Bianchi L, Manda-Stachouli C, Armini A et al (2009) Proteome analysis of bronchoalveolar lavage in individuals from Metsovo, nonoccupationally exposed to asbestos. J Proteome Res 8(2):860–869

    Article  CAS  PubMed  Google Scholar 

  12. Pastorino S, Yoshikawa Y, Pass HI, Emi M, Nasu M, Pagano I et al (2018) A subset of mesotheliomas with improved survival occurring in carriers of BAP1 and other germline mutations. J Clin Oncol 36:3485–3494

    Article  CAS  PubMed Central  Google Scholar 

  13. Panou V, Gadiraju M, Wolin A, Weipert CM, Skarda E, Husain AN et al (2018) Frequency of germline mutations in cancer susceptibility genes in malignant mesothelioma. J Clin Oncol 36(28):2863–2871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bueno R, Stawiski EW, Goldstein LD et al (2016) Comprehensive genomic analysis of malignant pleural mesothelioma identifies recurrent mutations, gene fusions and splicing alterations. Nat Genet 48(4):407–416

    Article  CAS  PubMed  Google Scholar 

  15. Huang SXL, Jaurand MC, Kamp DW, Whysner J, Hei TK (2011) Role of mutagenicity in asbestos fiber-induced carcinogenicity and other diseases. J Toxicol Environ Health B Crit Rev 14(1–4):179–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Takeda M, Kasai T, Enomoto Y, Takano M, Morita K, Nakai T et al (2014) Comparison of genomic abnormality in malignant mesothelioma by the site of origin. J Clin Pathol 67(12):1038–1043

    Article  PubMed  Google Scholar 

  17. Borczuk AC, Pei J, Taub RN, Levy B, Nahum O, Chen J et al (2016) Genome-wide analysis of abdominal and pleural malignant mesothelioma with DNA arrays reveals both common and distinct regions of copy number alteration. Cancer Biol Ther 17(3):328–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Galani V, Tatsaki E, Bai M, Kitsoulis P, Lekka M, Nakos G et al (2010) The role of apoptosis in the pathophysiology of Acute Respiratory Distress Syndrome (ARDS): an up-to-date cell-specific review. Pathol Res Pract 206:145–150

    Article  CAS  PubMed  Google Scholar 

  19. Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P et al (2018) Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ 25(3):486–541

    Article  PubMed  PubMed Central  Google Scholar 

  20. Igney FH, Krammer PH (2002) Death and anti-death: tumour resistance to apoptosis. Nat Rev Cancer 2(4):277–288

    Article  CAS  PubMed  Google Scholar 

  21. Belyanskaya LL, Marti TM, Hopkins-Donaldson S, Kurtz S, Felley-Bosco E, Stahel RA (2007) Human agonistic TRAIL receptor antibodies Mapatumumab and Lexatumumab induce apoptosis in malignant mesothelioma and act synergistically with cisplatin. Mol Cancer 6:66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kim KU, Wilson SM, Abayasiriwardana KS, Collins R, Fjellbirkeland L, Xu Z et al (2005) A novel in vitro model of human mesothelioma for studying tumor biology and apoptotic resistance. Am J Respir Cell Mol Biol 33(6):541–548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rippo MR, Moretti S, Vescovi S, Tomasetti M, Orecchia S, Amici G et al (2004) FLIP overexpression inhibits death receptor-induced apoptosis in malignant mesothelial cells. Oncogene 23(47):7753–7760

    Article  CAS  PubMed  Google Scholar 

  24. Liu W, Bodle E, Chen JY, Gao M, Rosen GD, Broaddus VC (2001) Tumor necrosis factor-related apoptosis-inducing ligand and chemotherapy cooperate to induce apoptosis in mesothelioma cell lines. Am J Respir Cell Mol Biol 25(1):111–118

    Article  CAS  PubMed  Google Scholar 

  25. Tomasetti M, Rippo MR, Alleva R, Moretti S, Andera L, Neuzil J et al (2004) Alpha-tocopheryl succinate and TRAIL selectively synergise in induction of apoptosis in human malignant mesothelioma cells. Br J Cancer 90(8):1644–1653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Abayasiriwardana KS, Barbone D, Kim KU, Vivo C, Lee KK, Dansen TB et al (2007) Malignant mesothelioma cells are rapidly sensitized to TRAIL-induced apoptosis by low-dose anisomycin via Bim. Mol Cancer Ther 6(10):2766–2776

    Article  CAS  PubMed  Google Scholar 

  27. Katz SI, Zhou L, Chao G, Smith CD, Ferrara T, Wang W et al (2009) Sorafenib inhibits ERK1/2 and MCL-1(L) phosphorylation levels resulting in caspase-independent cell death in malignant pleural mesothelioma. Cancer Biol Ther 8(24):2406–2416

    Article  CAS  PubMed  Google Scholar 

  28. Heintz NH, Janssen-Heininger YM, Mossman BT (2010) Asbestos, lung cancers, and mesotheliomas: from molecular approaches to targeting tumor survival pathways. Am J Respir Cell Mol Biol 42(2):133–139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yang H, Bocchetta M, Kroczynska B, Elmishad AG, Chen Y, Liu Z et al (2006) TNF-alpha inhibits asbestos-induced cytotoxicity via a NF-kappaB-dependent pathway, a possible mechanism for asbestos-induced oncogenesis. Proc Natl Acad Sci USA 103(27):10397–10402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Raphaël M, Lehen’kyi V, Vandenberghe M, Beck B, Khalimonchyk S, Abeele F et al (2014) TRPV6 calcium channel translocates to the plasma membrane via Orai1-mediated mechanism and controls cancer cell survival. Proc Natl Acad Sci USA 111(37):E3870–E3879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Li F, Zhu D, Yang Y, Wu K, Zhao S (2017) Overexpression of calcyphosine is associated with poor prognosis in esophageal squamous cell carcinoma. Oncol Lett 14(5):6231–6237

    PubMed  PubMed Central  Google Scholar 

  32. Ramos-Nino ME, Timblin CR, Mossman BT (2002) Mesothelial cell transformation requires increased AP-1 binding activity and ERK-dependent Fra-1 expression. Cancer Res 62(21):6065–6069

    CAS  PubMed  Google Scholar 

  33. Manning CB, Sabo-Attwood T, Robledo RF, Macpherson MB, Rincon M, Vacek P (2008) Targeting the MEK1 cascade in lung epithelium inhibits proliferation and fibrogenesis by asbestos. Am J Respir Cell Mol Biol 38:618–626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Shukla A, Hillegass JM, MacPherson MB, Beuschel SL, Vacek PM, Butnor KJ et al (2011) ERK2 is essential for the growth of human epithelioid malignant mesotheliomas. Int J Cancer 129(5):1075–1086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Masuelli L, Benvenuto M, Stefano ED, Mattera R, Fantini M, Feudis GD et al (2017) Curcumin blocks autophagy and activates apoptosis of malignant mesothelioma cell lines and increases the survival of mice intraperitoneally transplanted with a malignant mesothelioma cell line. Oncotarget 8(21):34405–34422

    Article  PubMed  PubMed Central  Google Scholar 

  36. Li Q, Kawamura K, Yamanaka M, Okamoto S, Yang S, Yamauchi S et al (2012) Upregulated p53 expression activates apoptotic pathways in wild-type p53-bearing mesotheliomaand enhances cytotoxicity of cisplatin and pemetrexed. Cancer Gene Ther 19(3):218–228

    Article  CAS  PubMed  Google Scholar 

  37. Soini Y, Kinnula V, Kaarteenaho-Wiik R, Kurttila E, Linnainmaa K, Pääkkö P (1999) Apoptosis and expression of apoptosis regulating proteins bcl-2, mcl-1, bcl-X, and bax in malignant mesothelioma. Clin Cancer Res 5:3508–3515

    CAS  PubMed  Google Scholar 

  38. Mohiuddin I, Cao X, Fang B, Nishizaki M, Smythe WR (2001) Significant augmentation of pro-apoptotic gene therapy by pharmacologic bcl-xl down-regulation in mesothelioma. Cancer Gene Ther 8:547–554

    Article  CAS  PubMed  Google Scholar 

  39. Smythe WR, Mohuiddin I, Ozveran M, Cao XX (2002) Antisense therapy for malignant mesothelioma with oligonucleotides targeting the bcl-xl gene product. J Thorac Cardiovasc Surg 123:1191–1198

    Article  CAS  PubMed  Google Scholar 

  40. Cao X, Rodarte C, Zhang L, Morgan CD, Littlejohn J, Smythe WR (2007) Bcl2/bcl-xL inhibitor engenders apoptosis and increases chemosensitivity in mesothelioma. Cancer Biol Ther 6(2):246–252

    Article  CAS  PubMed  Google Scholar 

  41. Littlejohn JE, Cao X, Miller SD, Ozvaran MK, Jupiter D, Zhang L et al (2008) Bcl-xL antisense oligonucleotide and cisplatin combination therapy extends survival in SCID mice with established mesothelioma xenografts. Int J Cancer 123(1):202–208

    Article  CAS  PubMed  Google Scholar 

  42. Varin E, Denoyelle C, Brotin E, Meryet-Figuière M, Giffard F, Abeilard E et al (2010) Downregulation of Bcl-xL and Mcl-1 is sufficient to induce cell death in mesothelioma cells highly refractory to conventional chemotherapy. Carcinogenesis 31(6):984–993

    Article  CAS  PubMed  Google Scholar 

  43. Daubriac J, Fleury-Feith J, Kheuang L, Galipon J, Saint-Albin A, Renier A et al (2009) Malignant pleural mesothelioma cells resist anoikis as quiescent pluricellular aggregates. Cell Death Differ 16(8):1146–1155

    Article  CAS  PubMed  Google Scholar 

  44. Sugarbaker DJ, Richards WG, Gordon GJ, Dong L, De Rienzo A, Maulik G et al (2008) Transcriptome sequencing of malignant pleural mesothelioma tumors. Proc Natl Acad Sci USA 105(9):3521–3526

    Article  PubMed  PubMed Central  Google Scholar 

  45. Saxton RA, Sabatini DM (2017) mTOR signaling in growth, metabolism, and disease. Cell 168:960–976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Galani V, Kastamoulas M, Varouktsi A, Lampri E, Mitselou A, Arvanitis DL (2017) IFNs-signaling effects on lung cancer: an up-to-date pathways-specific review. Clin Exp Med 17(3):281–289

    Article  CAS  PubMed  Google Scholar 

  47. Galani V, Papadatos SS, Alexiou G, Galani A, Kyritsis AP (2017) In vitro and in vivo preclinical effects of type I IFNs on gliomas. J Interferon Cytokine Res 37(4):139–146

    Article  CAS  PubMed  Google Scholar 

  48. Hong TM, Yang PC, Peck K, Chen JJ, Yang SC, Chen YC et al (2000) Profiling the downstream genes of tumor suppressor PTEN in lung cancer cells by complementary DNA microarray. Am J Respir Cell Mol Biol 23(3):355–363

    Article  CAS  PubMed  Google Scholar 

  49. Zhou S, Liu L, Li H, Eilers G, Kuang Y, Shi S et al (2014) Multipoint targeting of the PI3K/mTOR pathway in mesothelioma. Br J Cancer 110(10):2479–2488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Altomare DA, You H, Xiao GH, Ramos-Nino ME, Skele KL, De Rienzo A et al (2005) Human and mouse mesotheliomas exhibit elevated AKT/PKB activity, which can be targeted pharmacologically to inhibit tumor cell growth. Oncogene 24(40):6080–6089

    Article  CAS  PubMed  Google Scholar 

  51. Suzuki Y, Murakami H, Kawaguchi K, Tanigushi T, Fujii M, Shinjo K et al (2009) Activation of the PI3K-AKT pathway in human malignant mesothelioma cells. Mol Med Rep 2(2):181–188

    CAS  PubMed  Google Scholar 

  52. Pinton G, Manente AG, Angeli G, Mutti L, Moro L (2012) Perifosine as a potential novel anti-cancer agent inhibits EGFR/MET-AKT axis in malignant pleural mesothelioma. PLoS ONE 7(5):e36856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Barbone D, Yang TM, Morgan JR, Gaudino G, Broaddus VC (2008) Mammalian target of rapamycin contributes to the acquired apoptotic resistance of human mesothelioma multicellular spheroids. J Biol Chem 283(19):13021–13330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wilson SM, Barbone D, Yang TM, Jablons DM, Bueno R, Sugarbaker DJ et al (2008) mTOR mediates survival signals in malignant mesothelioma grown as tumor fragment spheroids. Am J Respir Cell Mol Biol 39(5):576–583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Vivo C, Liu V, Broaddus VC (2003) c-Jun N-terminal kinase contributes to apoptotic synergy induced by tumor necrosis factor-related apoptosis-inducing ligand plus DNA damage in chemoresistant, p53 inactive mesothelioma cells. J Biol Chem 278(28):25461–25467

    Article  CAS  PubMed  Google Scholar 

  56. Holley SL, Fryer AA, Haycock JW, Grubb SE, Strange RC, Hoban PR (2007) Differential effects of glutathione S-transferase pi (GSTP1) haplotypes on cell proliferation and apoptosis. Carcinogenesis 28(11):2268–2273

    Article  CAS  PubMed  Google Scholar 

  57. Kastamoulas M, Chondrogiannis G, Kanavaros P, Vartholomatos G, Bai M, Briasoulis E et al (2013) Cytokine effects on cell survival and death of A549 lung carcinoma cells. Cytokine 61(3):816–825

    Article  CAS  PubMed  Google Scholar 

  58. Fox S, Dharmarajan A (2006) WNT signaling in malignant mesothelioma. Front Biosci 11:2106–2112

    Article  CAS  PubMed  Google Scholar 

  59. Mazieres J, You L, He B, Xu Z, Twogood S, Lee AY et al (2005) Wnt2 as a new therapeutic target in malignant pleural mesothelioma. Int J Cancer 117(2):326–332

    Article  CAS  PubMed  Google Scholar 

  60. Kashiwakura Y, Ochiai K, Watanabe M, Abarzua F, Sakaguchi M, Takaoka M et al (2008) Down-regulation of inhibition of differentiation-1 via activation of activating transcription factor 3 and Smad regulates REIC/Dickkopf-3-induced apoptosis. Cancer Res 68(20):8333–8341

    Article  CAS  PubMed  Google Scholar 

  61. Affar EB, Carbone M (2018) BAP1 regulates different mechanisms of cell death. Cell Death Dis 9:1151

    Article  PubMed  PubMed Central  Google Scholar 

  62. Zhang Y, Shi J, Liu X, Feng L, Gong Z, Koppula P et al (2018) BAP1 links metabolic regulation of ferroptosis to tumour suppression. Nat Cell Biol 20:1181–1192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Bott M, Brevet M, Taylor BS, Shimizu S, Ito T, Wang L et al (2011) The nuclear deubiquitinase BAP1 is commonly inactivated by somatic mutations and 3p21.1 losses in malignant pleural mesothelioma. Nat Genet 43:668–672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Testa JR, Cheung M, Pei J, Below JE, Tan Y, Sementino E et al (2011) Germline BAP1 mutations predispose to malignant mesothelioma. Nat Genet 43:1022–1025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Baumann F, Flores E, Napolitano A, Kanodia S, Taioli E, Pass H et al (2015) Mesothelioma patients with germline BAP1 mutations have 7-fold improved long-term survival. Carcinogenesis 36(1):76–81

    Article  CAS  PubMed  Google Scholar 

  66. Cheung M, Testa JR (2017) BAP1, a tumor suppressor gene driving malignant mesothelioma. Transl Lung Cancer Res 6:270–278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Nasu M, Emi M, Pastorino S, Tanji M, Powers A, Luk H et al (2015) High incidence of somatic BAP1 alterations in sporadic malignant mesothelioma. J Thorac Oncol 10:565–576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Yoshikawa Y, Emi M, Hashimoto-Tamaoki T, Ohmuraya M, Sato A, Tsujimura T et al (2016) High-density array-CGH with targeted NGS unmask multiple noncontiguous minute deletions on chromosome 3p21 in mesothelioma. Proc Natl Acad Sci USA 113:13432–13437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Bononi A, Giorgi C, Patergnani S, Larson D, Verbruggen K, Tanji M et al (2017) BAP1 regulates IP3R3-mediated Ca2+ flux to mitochondria suppressing cell transformation. Nature 546:549–553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Mouw KW, Goldberg MS, Konstantinopoulos PA, D’Andrea AD (2017) DNA damage and repair biomarkers of immunotherapy response. Cancer Discov 7:675–693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Guazzelli A, Meysami P, Bakker E, Demonacos C, Giordano A, Krstic-Demonacos M et al (2019) BAP1 Status Determines the sensitivity of malignant mesothelioma cells to gemcitabine treatment. Int J Mol Sci 20(2):E429

    Article  CAS  PubMed  Google Scholar 

  72. Napolitano A, Pellegrini L, Dey A, Larson D, Tanji M, Flores EG et al (2016) Minimal asbestos exposure in germline BAP1 heterozygous mice is associated with deregulated inflammatory response and increased risk of mesothelioma. Oncogene 35(15):1996–2002

    Article  CAS  PubMed  Google Scholar 

  73. Xu J, Kadariya Y, Cheung M, Pei J, Talarchek J, Sementino E et al (2014) Germline mutation of Bap1 accelerates development of asbestos-induced malignantmesothelioma. Cancer Res 74(16):4388–4397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kadariya Y, Cheung M, Xu J, Pei J, Sementino E, Menges CW et al (2016) Bap1 is a bona fide tumor suppressor: genetic evidence from mouse models carrying heterozygous germline Bap1 mutations. Cancer Res 76(9):2836–2844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ohar JA, Cheung M, Talarchek J, Howard SE, Howard TD, Hesdorffer M et al (2016) Germline BAP1 mutational landscape of asbestos-exposed malignant mesothelioma patients with family history of cancer. Cancer Res 76(2):206–215

    Article  CAS  PubMed  Google Scholar 

  76. Leblay N, Leprêtre F, Le Stang N, Gautier-Stein A, Villeneuve L, Isaac S et al (2017) BAP1 is altered by copy number loss, mutation, and/or loss of protein expression in more than 70% of malignant peritoneal mesotheliomas. J Thorac Oncol 12(4):724–733

    Article  PubMed  Google Scholar 

  77. Carbone M, Shimizu D, Napolitano A, Tanji M, Pass HI, Yang H et al (2016) Positive nuclear BAP1 immunostaining helps differentiate non-small cell lung carcinomas from malignant mesothelioma. Oncotarget 7(37):59314–59321

    Article  PubMed  PubMed Central  Google Scholar 

  78. Zucali PA, Ceresoli GL, De Vincenzo F, Simonelli M, Lorenzi E, Gianoncelli L et al (2011) Advances in the biology of malignant pleural mesothelioma. Cancer Treat Rev 37(7):543–558

    Article  CAS  PubMed  Google Scholar 

  79. Hoesel B, Schmid JA (2013) The complexity of NF-kB signaling in inflammation and cancer. Mol Cancer 12(1):86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Gyrd-Hansen M, Meier P (2010) IAPs: from caspase inhibitors to modulators of NF-κB, inflammation and cancer. Nat Rev Cancer 10(8):561–574

    Article  CAS  PubMed  Google Scholar 

  81. Sun X, Gulyás M, Hjerpe A, Dobra K (2006) Proteasome inhibitor PSI induces apoptosis in human mesothelioma cells. Cancer Lett 232(2):161–169

    Article  CAS  PubMed  Google Scholar 

  82. Borczuk AC, Cappellini GC, Kim HK, Hesdorffer M, Taub RN, Powell CA (2007) Molecular profiling of malignant peritoneal mesothelioma identifies the ubiquitin-proteasome pathway as a therapeutic target in poor prognosis tumors. Oncogene 26(4):610–617

    Article  CAS  PubMed  Google Scholar 

  83. Gordon GJ, Mani M, Maulik G, Mukhopadhyay L, Yeap BY, Kindler HL et al (2008) Preclinical studies of the proteasome inhibitor bortezomib in malignant pleural mesothelioma. Cancer Chemother Pharmacol 61(4):549–558

    Article  CAS  PubMed  Google Scholar 

  84. Wang Y, Rishi AK, Puliyappadamba VT, Sharma S, Yang H, Tarca A et al (2010) Targeted proteasome inhibition by Velcade induces apoptosis in human mesothelioma and breast cancer cell lines. Cancer Chemother Pharmacol 66(3):455–466

    Article  CAS  PubMed  Google Scholar 

  85. Chondrogiannis G, Kastamoulas M, Kanavaros P, Vartholomatos G, Bai M, Baltogiannis D et al (2014) Cytokine effects on cell death and major signaling pathways in LNCaP prostate carcinoma cells. B Biomed Res Int 2014:536049

    PubMed  Google Scholar 

  86. Jin L, Amatya VJ, Takeshima Y, Shrestha L, Kushitani K, Inai K (2010) Evaluation of apoptosis and immunohistochemical expression of the apoptosis-related proteins in mesothelioma. Hiroshima J Med Sci 59(2):27–33

    CAS  PubMed  Google Scholar 

  87. Xia C, Xu Z, Yuan X, Uematsu K, You L, Li K et al (2002) Induction of apoptosis in mesothelioma cells by antisurvivin oligonucleotides. Mol Cancer Ther 1(9):687–694

    CAS  PubMed  Google Scholar 

  88. Zaffaroni N, Costa A, Pennati M, De Marco C, Affini E, Madeo M et al (2007) Survivin is highly expressed and promotes cell survival in malignant peritoneal mesothelioma. Cell Oncol 29(6):453–466

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Zhang WQ, Dai YY, Hsu PC, Wang H, Cheng L, Yang YL et al (2017) Targeting YAP in malignant pleural mesothelioma. J Cell Mol Med 21(11):2663–2676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Park HW, Guan KL (2013) Regulation of the Hippo pathway and implications for anticancer drug development. Trends Pharmacol Sci 34:581–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Gomez M, Gomez V, Hergovich A (2014) The Hippo pathway in disease and therapy: cancer and beyond. Clin Transl Med 3:22–33

    Article  PubMed  PubMed Central  Google Scholar 

  92. Bianchi AB, Mitsunaga SI, Cheng JQ, Klein WM, Jhanwar SC, Seizinger B et al (1995) High frequency of inactivating mutations in the neurofibromatosis type 2 gene (NF2) in primary malignant mesotheliomas. Proc Natl Acad Sci USA 92:10854–10858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Sekido Y, Pass HI, Bader S, Mew DJ, Christman MF, Gazdar AF et al (1995) Neurofibromatosis Type-2 (Nf2) gene is somatically mutated in mesothelioma but not in lung-cancer. Cancer Res 55:1227–1231

    CAS  PubMed  Google Scholar 

  94. Murakami H, Mizuno T, Taniguchi T, Fujii M, Ishiguro F, Fukui T et al (2011) LATS2 is a tumor suppressor gene of malignant mesothelioma. Cancer Res 71:873–883

    Article  CAS  PubMed  Google Scholar 

  95. Miyanaga A, Masuda M, Tsuta K, Kawasaki K, Nakamura Y, Sakuma T et al (2015) Hippo pathway gene mutations in malignant mesothelioma revealed by RNA and targeted exon sequencing. J Thorac Oncol 10:844–851

    Article  CAS  PubMed  Google Scholar 

  96. Shapiro IM, Kolev VN, Vidal CM, Kadariya Y, Ring JE, Wright Q et al (2014) Merlin deficiency predicts FAK inhibitor sensitivity: a synthetic lethal relationship. Sci Transl Med 6(237):237ra68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Woodard GA, Yang YL, You L, Jablons DM (2017) Drug development against the hippo pathway in mesothelioma. Transl Lung Cancer Res 6(3):335–342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Tranchant R, Quetel L, Montagne F, De Wolf J, Meiller C, De Koning L et al (2018) Assessment of signaling pathway inhibitors and identification of predictive biomarkers in malignant pleural mesothelioma. Lung Cancer 126:15–24

    Article  PubMed  Google Scholar 

  99. Tranchant R, Quetel L, Tallet A, Meiller C, Renier A, de Koning L et al (2017) Co-occurring mutations of tumor suppressor genes, LATS2 and NF2, in malignant pleural mesothelioma. Clin Cancer Res 23(12):3191–3202

    Article  CAS  PubMed  Google Scholar 

  100. Pellegrini L, Xue J, Larson D, Pastorino S, Jube S, Forest KH et al (2017) HMGB1 targeting by ethyl pyruvate suppresses malignant phenotype of human mesothelioma. Oncotarget 8(14):22649–22661

    Article  PubMed  PubMed Central  Google Scholar 

  101. Jube S, Rivera ZS, Bianchi ME, Powers A, Wang E, Pagano I et al (2012) Cancer cell secretion of the DAMP protein HMGB1 supports progression in malignant mesothelioma. Can Res 72(13):3290–3301

    Article  CAS  Google Scholar 

  102. Edwards JC, Swinson DE, Jones JL, Waller DA, O’Byrne KJ (2006) EGFR expression: associations with outcome and clinicopathological variables in malignant pleural mesothelioma. Lung Cancer 54:399–407

    Article  CAS  PubMed  Google Scholar 

  103. Singhal S, Wiewrodt R, Malden LD, Amin KM, Matzie K, Friedberg J et al (2003) Gene expression profiling of malignant mesothelioma. Clin Cancer Res 9(8):3080–3097

    CAS  PubMed  Google Scholar 

Download references

Funding

This research did not receive any specific grant from any funding agency in the public, commercial, or not-for-profit sector.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasiliki Galani.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galani, V., Varouktsi, A., Papadatos, S.S. et al. The role of apoptosis defects in malignant mesothelioma pathogenesis with an impact on prognosis and treatment. Cancer Chemother Pharmacol 84, 241–253 (2019). https://doi.org/10.1007/s00280-019-03878-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-019-03878-3

Keywords

Navigation