Skip to main content

Advertisement

Log in

Role of immunotherapy in bladder cancer: past, present and future

  • Review Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

As research focus in oncology has recently shifted from oral targeted therapy to immunomodulation, the era of successful drug development in bladder cancer has just begun. This has led to unprecedented approval of five immunotherapeutic agents by regulatory agencies for metastatic bladder cancer within a span of 12 months. With an initial triumph of anti-programmed cell death-1 (anti-PD-1) and anti-programmed cell death ligand-1 (anti-PDL-1) drugs, ongoing efforts are aimed at identification and validation of new druggable immune targets to consolidate the initial gains. In this paper, we review the role of immunotherapy in the treatment of bladder cancer as well as the various emerging immunotherapeutic agents and their possible use in bladder cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Antoni S, Ferlay J, Soerjomataram I et al (2017) Bladder cancer incidence and mortality: a global overview and recent trends. Euro Urol 71:96–108. https://doi.org/10.1016/j.eururo.2016.06.010

    Article  Google Scholar 

  2. International Collaboration of Trialists (2011) International phase III trial assessing neoadjuvant cisplatin, methotrexate, and vinblastine chemotherapy for muscle-invasive bladder cancer: long-term results of the BA06 30894 trial. J Clin Oncol 29(16):2171–2177. https://doi.org/10.1200/JCO.2010.32.3139 (Epub 2011 Apr 18)

    Article  PubMed Central  Google Scholar 

  3. Von der Maase H, Hansen SW, Roberts JT et al (2000) Gemcitabine and cisplatin versus methotrexate, vinblastine, doxorubicin and cisplatin in advanced or metastatic bladder cancer: results of a large, randomised, multinational, multicenter, phase III study. J Clin Oncol 18:3068–3077

    Article  PubMed  Google Scholar 

  4. Bellmunt J, de Wit R, Vaughn DJ, Fradet Y, Lee JL, Fong L et al (2017) Pembrolizumab as second-line therapy for advanced urothelial carcinoma. N Engl J Med 16(11):1015–1026. https://doi.org/10.1056/NEJMoa1613683 376)

    Article  Google Scholar 

  5. Bellmunt J, Théodore C, Demkov T et al (2009) Phase III trial of vinflunine plus best supportive care compared with best supportive care alone after a platinum-containing regimen in patients with advanced transitional cell carcinoma of the urothelial tract. J Clin Oncol 27:4454–4461

    Article  CAS  PubMed  Google Scholar 

  6. Lawrence MS, Stojanov P, Polak P, Kryukov GV, Cibulskis K, Sivachenko A et al (2013) Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499(7457):214–218. https://doi.org/10.1038/nature12213 (Epub 2013 Jun 16)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Postow MA, Callahan MK, Wolchok JD (2015) Immune checkpoint blockade in cancer therapy. J Clin Oncol 33:1974–1982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Morales A, Eidinger D, Bruce AW (1976) Intracavitary bacillus Calmette–Guerin in the treatment of superficial bladder tumours. J Urol 116(2):180–183

    Article  CAS  PubMed  Google Scholar 

  9. Mitropoulos DN (2005) Novel insights into the mechanism of action of intravesical immunomodulators. In Vivo 19:611–621

    CAS  PubMed  Google Scholar 

  10. Elsässer-Beile U, Leiber C, Wolf P, Lucht M, Mengs U, Wetterauer U (2005) Adjuvant intravesical treatment of superficial bladder cancer with a standardized mistletoe extract. J Urol 174(1):76–79

    Article  PubMed  Google Scholar 

  11. Babjuk M, Oosterlinck W, Sylvester R, Kaasinen E, Böhle A, Palou-Redorta J (2008) EAU guidelines on non-muscle-invasive urothelial carcinoma of the bladder. Eur Urol 54(2):303–314. https://doi.org/10.1016/j.eururo.2008.04.051 (Epub 2008 Apr 30)

    Article  PubMed  Google Scholar 

  12. Kamat AM, Flaig TW, Grossman HB et al (2015) Expert consensus document: consensus statement on best practice management regarding the use of intravesical immunotherapy with BCG for bladder cancer. Nat Rev Urol 12:225–235

    Article  PubMed  Google Scholar 

  13. Malmström PU, Sylvester RJ, Crawford DE et al (2009) An individual patient data meta-analysis of the long-term outcome of randomised studies comparing intravesical mitomycin C versus bacillus Calmette–Guérin for non-muscle-invasive bladder cancer. Eur Urol 56:247–256

    Article  PubMed  Google Scholar 

  14. Sylvester RJ, van der Meijden AP, Witjes JA, Kurth K (2005) Bacillus Calmette–Guerin versus chemotherapy for the intravesical treatment of patients with carcinoma in situ of the bladder: a meta-analysis of the published results of randomized clinical trials. J Urol 174:86–91

    Article  CAS  PubMed  Google Scholar 

  15. Brausi M, Oddens J, Sylvester R et al (2014) Side effects of Bacillus Calmette–Guérin (BCG) in the treatment of intermediate- and high-risk Ta, T1 papillary carcinoma of the bladder: results of the EORTC genito-urinary cancers group randomised phase 3 study comparing one-third dose with full dose and 1 year with 3 years of maintenance BCG. Eur Urol 65:69–76

    Article  CAS  PubMed  Google Scholar 

  16. Witjes JA (2006) Management of BCG failures in superficial bladder cancer: a review. Eur Urol 49(5):790–797 (Epub 2006 Jan 24)

    Article  PubMed  Google Scholar 

  17. Zlotta AR, Fleshner NE, Jewett MA (2009) The management of BCG failure in non-muscle-invasive bladder cancer: an update. Can Urol Assoc J 3(6 Suppl 4):S199–S205

    PubMed  PubMed Central  Google Scholar 

  18. Sengiku A, Ito M, Miyazaki Y et al (2013) A prospective comparative study of intravesical bacillus Calmette–Guerin therapy with the Tokyo or Connaught strain for nonmuscle invasive bladder cancer. J Urol 190(1):50–54. https://doi.org/10.1016/j.juro.2013.01.084

    Article  PubMed  Google Scholar 

  19. Chade DC, Machado A, Waksman R et al (2017) Effectiveness of the Moreau strain of Bacillus Calmette–Guerin (BCG) for nonmuscle invasive bladder cancer. J Clin Oncol 35:4539–4539. https://doi.org/10.1200/JCO.2017.35.15_suppl.4539

    Google Scholar 

  20. Nakamura T, Fukiage M, Higuchi M et al (2014) Nanoparticulation of BCG-CWS for application to bladder cancer therapy. J Control Release 176:44–53

    Article  CAS  PubMed  Google Scholar 

  21. Pagliaro LC, Keyhani A, Williams D et al (2003) Repeated intravesical instillations of an adenoviral vector in patients with locally advanced bladder cancer: a phase I study of p53 gene therapy. J Clin Oncol 21(12):2247–2253

    Article  CAS  PubMed  Google Scholar 

  22. Burke JM, Lamm DL, Meng MV et al (2012) A first in human phase 1 study of CG0070, a GM-CSF expressing oncolytic adenovirus, for the treatment of nonmuscle invasive bladder cancer. J Urol 188(6):2391–2397

    Article  CAS  PubMed  Google Scholar 

  23. Carthon B, Wolchok JD, Yuan J, Kamat A, Ng Tang DS, Sun J et al (2010) Pre-operative CTLA-4 blockade: tolerability and immune monitoring in the setting of a pre-surgical clinical trial. Clin Cancer Res 16(10):2861–2871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Emens LA, Middleton G (2015) The interplay of immunotherapy and chemotherapy: harnessing potential synergies. Cancer Immunol Res 3(5):436–443. https://doi.org/10.1158/2326-6066.CIR-15-0064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Galsky MD, Hahn NM, Albany C, Fleming MT et al (2016) Phase II trial of gemcitabine + cisplatin + ipilimumab in patients with metastatic urothelial cancer. J Clin Oncol 34(2_suppl):357. https://doi.org/10.1200/jco.2016.34.2_suppl.357

    Article  Google Scholar 

  26. Sharma P, Callahan MK, Bono P, Kim J, Spiliopoulou P, Calvo E et al (2016) Nivolumab monotherapy in recurrent metastatic urothelial carcinoma (CheckMate 032): a multicentre, open-label, two-stage, multi-arm, phase 1/2 trial. Lancet Oncol 17(11):1590–1598. https://doi.org/10.1016/S1470-2045(16)30496-X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sharma P, Callahan MK, Calvo E et al (2016) Efficacy and safety of nivolumab plus ipilimumab in previously treated metastatic urothelial carcinoma: first results from the phase I/II CheckMate 032 study. Presented at: 2016 SITC Annual Meeting; November 9–13, 2016

  28. Herbst RS, Soria JC, Kowanetz M, Fine GD, Hamid O, Gordon MS et al (2014) Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature 515(7528):563–567. https://doi.org/10.1038/nature14011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rosenberg JE, Hoffman-Censits J, Powles T et al (2016) Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial. Lancet. https://doi.org/10.1016/S0140-6736(16)00561-4

    Google Scholar 

  30. Balar AV et al (2017) Atezolizumab as first-line treatment in cisplatin-ineligible patients with locally advanced and metastatic urothelial carcinoma: a single-arm, multicentre, phase 2 trial. Lancet 389(10064):67–76

    Article  CAS  PubMed  Google Scholar 

  31. Rosenberg JE, Petrylak DP, Van Der Heijden MS, Necchi A et al (2016) PD-L1 expression, Cancer Genome Atlas (TCGA) subtype, and mutational load as independent predictors of reponse to atezolizumab (atezo) in metastatic urothelial carcinoma (mUC; IMvigor210). J Clin Oncol 34(15_suppl):104. https://doi.org/10.1200/JCO.2016.34.15_suppl.104

    Google Scholar 

  32. Necchi A, Joseph RW, Loriot Y et al (2017) Atezolizumab in platinum-treated locally advanced or metastatic urothelial carcinoma: post-progression outcomes from the phase 2 IMvigor210 study. Ann Oncol 28(12):3044–3050. https://doi.org/10.1093/annonc/mdx518

    Article  CAS  PubMed  Google Scholar 

  33. Powles T, Duran I, van der Heijden MS et al (2017) Atezolizumab versus chemotherapy in patients with platinum-treated locally advanced or metastatic urothelial carcinoma (IMvigor211): a multicentre, open-label, phase 3 randomised controlled trial. Lancet. https://doi.org/10.1016/S0140-6736(17)33297-X

    Google Scholar 

  34. Yamamoto N, Nokihara H, Yamada Y, Shibata T, Tamura Y, Seki Y et al (2017) Phase I study of Nivolumab, an anti-PD-1 antibody, in patients with malignant solid tumors. Investig N Drugs 35(2):207–216. https://doi.org/10.1007/s10637-016-0411-2

    Article  CAS  Google Scholar 

  35. Sharma P, Retz M, Siefker-Radtke A, Baron A, Necchi A, Bedke J et al (2017) Nivolumab in metastatic urothelial carcinoma after platinum therapy (CheckMate 275): a multicentre, single-arm, phase 2 trial. Lancet Oncol 18(3):312–322. https://doi.org/10.1016/S1470-2045(17)30065-7

    Article  CAS  PubMed  Google Scholar 

  36. Galsky MD, Saci A, Szabo PM et al (2017) Impact of tumour mutation burden on Nivolumab efficacy in second-line urothelial carcinoma patients:exploratory analysis of the phase II Checkmate275. Ann Oncol 28(suppl_5):v295–v329. https://doi.org/10.1093/annonc/mdx371

    Google Scholar 

  37. Plimack ER, Bellmunt J, Gupta S, Berger R, Chow LQ, Juco J, Lunceford J, Saraf S, Perini RF, O’Donnell PH (2017) Safety and activity of pembrolizumab in patients with locally advanced or metastatic urothelial cancer (KEYNOTE-012): a non-randomised, open-label, phase 1b study. Lancet Oncol 18(2):212–220. https://doi.org/10.1016/S1470-2045(17)30007-4

    Article  CAS  PubMed  Google Scholar 

  38. Balar AV, Castellano D, O’Donnell PH et al (2017) First line pembrolizumab in cisplatin-ineligible patients with locally advanced and unresectable or metastatic urothelial cancer (Keynote052): a multicentre, single-arm, phase 2 study. Lancet Oncol 18(11):1483–1492. https://doi.org/10.1016/S1470-2045(17)30616-2

    Article  CAS  PubMed  Google Scholar 

  39. Bellmunt J, de Wit R, Vaughn DJ, Fradet Y, Lee JL, Fong L et al (2017) Pembrolizumab as second-line therapy for advanced urothelial carcinoma. N Engl J Med 376:1015–1026. https://doi.org/10.1056/NEJMoa1613683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lara P, Beckett L, Li Y, Parikh M et al (2017) Combination checkpoint immunotherapy and cytotoxic chemotherapy: Pembrolizumab (pembro) plus either docetaxel or gemcitabine in patients with advanced or metastatic urothelial cancer. J Clin Oncol 35(6_suppl):398. https://doi.org/10.1200/JCO.2017.35.6_suppl.398

    Article  Google Scholar 

  41. Apolo AB, Ellerton J, Infante JR et al (2017) Avelumab treatment of metastatic urothelial carcinoma (mUC) in the phase 1b JAVELIN Solid Tumor study: updates analysis with > 6 months of follow up. Ann Oncol 28(suppl_5):v295–v329. https://doi.org/10.1093/annonc/mdx371

    Article  Google Scholar 

  42. Patel MR, Ellerton JA, Infante JR, Agrawal M, Gordon MS, Aljumaliy R et al (2017) Avelumab in patients with metastatic urothelial carcinoma: pooled results from two cohorts of the phase 1b JAVELIN Solid Tumor trial. J Clin Oncol 35(no. 6_suppl):330–330. https://doi.org/10.1200/JCO.2017.35.6_suppl.330

    Article  Google Scholar 

  43. Massard C, Gordon M, Sharma S, Rafii S, Wainberg ZA, Luke J et al (2016) Safety and efficacy of Durvalumab (MEDI4736), an anti-programmed cell death ligand-1 immune checkpoint inhibitor, in patients with advanced urothelial bladder cancer. J Clin Oncol 34(26):3119–3125. https://doi.org/10.1200/JCO.2016.67.9761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Powles T, O’Donnel PH, Massard C et al (2017) Efficacy and safety of durvalumab in locally advanced or metastatic urothelial carcinoma: updated results from a phase1/2 open-label study. JAMA Oncol 3(9):e172411. https://doi.org/10.1001/jamaoncol.2017.2411

    Article  PubMed  Google Scholar 

  45. Andrews LP, Marciscano AE, Drake CG, Vignali DAA (2017) LAG3 (CD223) as a cancer immunotherapy target. Immunol Rev 276:80–96. https://doi.org/10.1111/imr.12519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Goding SR et al (2013) Restoring immune function of tumour-specific CD4 + T cells during recurrence of melanoma. J Immunol 190:4899–4909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Vey N, Goncalves A, Karlin L et al (2015) A phase 1 dose-escalation study of IPH2102 (lirilumab, BMS-986015, LIRI), a fully human anti KIR monoclonal antibody (mAB) in patients (pts) with various hematologic (HEM) or solid malignancies (SOL). J Clin Oncol 33(15_suppl):3065. https://doi.org/10.1200/jco.2015.33.15_suppl.3065

    Google Scholar 

  48. Leidner R, Kang H, Haddad R et al (2016) Preliminary efficacy from a phase 1/2 study of the natural killer cell–targeted antibody, lirilumab in combination with nivolumab in squamous cell carcinoma of the head and neck. Presented at: 2016 SITC annual meeting, abstract 456, 9–13 November 2016. National Harbor, MD

  49. Willingham SB, Volkmer JP, Gentles AJ, Sahoo D et al (2012) The CD-47 signal regulatory protein alpha (SIRPa) interaction is a therapeutic target for human solid tumors. PNAS 109(17):6662–6667. https://doi.org/10.1073/pnas.1121623109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Beauchemin N, Arabzadeh A (2013) Carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) in cancer progression and metastasis. Cancer Metastasis Rev 32(3–4):643–671. https://doi.org/10.1007/s10555-013-9444-6

    Article  CAS  PubMed  Google Scholar 

  51. Blumenthal RD, Hansen HJ, Goldenberg DM (2005) Inhibition of adhesion, invasion, and metastasis by antibodies targeting CEACAM6 (NCA-90) and CEACAM5 (Carcinoembryonic Antigen). AACR J 65(19):8809–8817. https://doi.org/10.1158/0008-5472.CAN-05-0420

    CAS  Google Scholar 

  52. Segal NH, Logan TF, Hodi FS, McDermott D, Melero I, Hamid O et al (2017) Results from an integrated safety analysis of urelumab, an agonist anti-CD137 monoclonal antibody. Clin Cancer Res 23(8):1929–1936. https://doi.org/10.1158/1078-0432

    Article  CAS  PubMed  Google Scholar 

  53. Phase 1/2 data combining urelumab with Opdivo (nivolumab) in hematologic and solid tumors suggest increased antitumor effect in patients with melanoma. Bristol-Myers Squibb website. http://news.bms.com/press-release/bmy/phase-12-data-combining-urelumab-opdivo-nivolumab-hematologic-and-solid-tumors-sug. Updated 12 Nov 2016, Accessed 17 Nov 2016

  54. Gopal A, Levy R, Houot R, Patel S et al (2017) A phase 1 study of Utomilumab (PF-05082566), a 4–1BB/CD137 agonist, in combination with Rituximab in patients with CD20+ non-Hodgkin's lymphoma. Hematol Oncol 35(Supplement S2):260

    Article  Google Scholar 

  55. Ansell MS, Northfelt DW, Flinn I, Burris HA et al (2014) Phase 1 evaluation of an agonist anti-CD27 human antibody (CDX-1127) in patients with advanced hematologic malignancies. J Clin Oncol 32(15_suppl):3024. https://doi.org/10.1200/jco.2014.32.15_suppl.3024

    Google Scholar 

  56. Vonderheide RH et al (2007) Clinical activity and immune modulation in cancer patients treated with CP-870,893, a Novel CD40 agonist monoclonal antibody. J Clin Oncol 25(7):876–883

    Article  CAS  PubMed  Google Scholar 

  57. Bajor DL et al (2015) Abstract CT137: combination of agonistic CD40 monoclonal antibody CP-870,893 and anti-CTLA-4 antibody tremelimumab in patients with metastatic melanoma. AACR 106th Annual Meeting 2015; April 18–22, 2015;75(15 Suppl):Abstract nr CT137. https://doi.org/10.1158/1538-7445.AM2015-CT137

  58. Lu L et al (2014) Combined PD-1 blockade and GITR triggering induce a potent antitumor immunity in murine cancer models and synergizes with chemotherapeutic drugs. J Transl Med 12:36

    Article  PubMed  PubMed Central  Google Scholar 

  59. Curti BD, Kovacsovics-Bankowski M, Morris N, Walker E, Chisholm L, Floyd K et al (2013) OX40 is a potent immune stimulating target in late stage cancer patients. Cancer Res 73(24):7189–7198. https://doi.org/10.1158/0008-5472.CAN-12-4174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Yang C, Zhou Y, Zhang L, Jin C, Li M, Ye L (2015) Expression and function analysis of indoleamine 2 and 3-dioxygenase in bladder urothelial carcinoma. Int J Clin Exp Pathol 8(2):1768–1775

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Beatty GL, O’Dwyer PJ, Clark J, Shi JG, Bowman KJ, Scherle P et al (2017) First-in-human phase 1 study of the oral inhibitor of indoleamine 2,3-dioxygenase-1 epacadostat (INCB024360) in patients with advanced solid malignancies. CCR-16-2272 Published January 2017. https://doi.org/10.1158/1078-0432

  62. Gangadhar TC, Hamid O, Smith DC, Bauer TM, Wasser JS, Luke JJ et al (2015) Preliminary results from a Phase I/II study of epacadostat (incb024360) in combination with pembrolizumab in patients with selected advanced cancers. J Immunother Cancer 3(Suppl 2):O7. https://doi.org/10.1186/2051-1426-3-S2-O7

    Article  PubMed Central  Google Scholar 

  63. Gibney G, Hamid O, Lutzky J, Olszanski A, Gangadhar T, Gajewski T et al (2015) Updated results from a phase 1/2 study of epacadostat (INCB024360) in combination with ipilimumab in patients with metastatic melanoma. Eur J Cancer 51(Suppl 3):S106–S107. https://doi.org/10.1016/S0959-8049(16)30312-4

    Article  Google Scholar 

  64. Soliman HH, Minton SE, Han HS, Ismail-Khan R, Neuger A, Khambati F et al (2015) A phase I study of indoximod in patients with advanced malignancies. Oncotarget 7(16):22928–22938. https://doi.org/10.18632/oncotarget.8216

    Google Scholar 

  65. Soliman HH, Jackson E, Neuger T, Dees EC, Harvey RD, Han H et al (2014) A first in man phase I trial of the oral immunomodulator, indoximod, combined with docetaxel in patients with metastatic solid tumors. Oncotarget 5(18):8136–8146. https://doi.org/10.18632/oncotarget.2357

    Article  PubMed  PubMed Central  Google Scholar 

  66. Zakharia Y, Drabick JJ, Khleif S, McWilliams RR et al (2016) Updates on phase1b/2 trial of the indoleamine 2,3-dioxygenase pathway (IDO) inhibitor indoximod plus checkpoint inhibitors for the treatment of unresectable stage 3 or 4 melanoma. J Clin Oncol 34(15_suppl):3075. https://doi.org/10.1200/JCO.2016.34.15_suppl.3075

    Google Scholar 

  67. Nayak A, Hao Z, Sadek R, Dobbins R et al (2015) Phase 1a study of the safety, pharmacokinetics, and pharmacodynamics of GDC-0919 in patients with recurrent/advanced solid tumors. Eur J Cancer 51(Supplement 3):S69. https://doi.org/10.1016/S0959-8049(16)30209-X

    Article  Google Scholar 

  68. Mukaida N, Sasaki S, Baba T (2014) Chemokines in cancer development and progression and their potential as targeting molecules for cancer treatment. Mediat Inflamm 2014:170381. https://doi.org/10.1155/2014/170381

    Article  Google Scholar 

  69. Escudero-Lourdes C, Wu T, Camarillo JM, Gandolfi AJ (2012) Interleukin-8 (IL-8) over-production and autocrine cell activation are key factors in monomethylarsonous acid [MMA(III)]-induced malignant transformation of urothelial cells. Toxicol Appl Pharmacol 258:10–18

    Article  CAS  PubMed  Google Scholar 

  70. Schott AF, Wicha SM, Perez RP, Goldstein LJ et al (2015) Abstract P6-03-01: a phase Ib study of the CXCR1/2 inhibitor reparixin in combination with weekly paclitaxel in metastatic HER2 negative breast cancer—first analysis. Can Res 75(9 Supplement):P6-03-01. https://doi.org/10.1158/1538-7445.SABCS14-P6-03-01.

    Article  Google Scholar 

  71. Hong D, Falchook G, Cook CE, Harb W, Lyne P, McCoon P et al (2016) A phase 1b study (SCORES) assessing safety, tolerability, pharmacokinetics, and preliminary anti-tumor activity of durvalumab combined with AZD9150 or AZD5069 in patients with advanced solid malignancies and SCCHN. Ann Oncol 27(suppl_6):1049PD. https://doi.org/10.1093/annonc/mdw378.04

    Google Scholar 

  72. Joyce JA, Pollard JW (2009) Microenvironmental regulation of metastasis. Nat Rev Cancer 9:239–252

    Article  CAS  PubMed  Google Scholar 

  73. Rugo HS, Sharma N, Reebel L, Rodal MB et al (2014) Phase 1B study of PLX3397, a CSF1R inhibitor, and Paclitaxel in patients with advanced solid tumors. Ann Oncol 25(suppl_4):iv148. https://doi.org/10.1093/annonc/mdu331.7

    Article  Google Scholar 

  74. LaRue H, Ayari C, Bergeron A, Fradet Y (2013) Toll-like receptors in urothelial cells–targets for cancer immunotherapy. Nat Rev Urol 10(9):537–545

    Article  CAS  PubMed  Google Scholar 

  75. Chow LQM et al (2014) Phase 1b Trial of TLR8 agonist VTX-2337 in combination with cetuximab in patients with recurrent or metastatic squamous cell carcinomas of the head and Neck (SCCHN). Int J Radiat Oncol Biol Phys 88:503–504

    Article  Google Scholar 

  76. Schmoll HJ, Riera-Knorrenschild J, Kopp HG, Mayer F, Kroening H, Nitsche D et al (2015) Maintenance therapy with the TLR-9 agonist MGN1703 in the phase II IMPACT study of metastatic colorectal cancer patients: a subgroup with improved overall survival. J Clin Oncol 33(suppl 3; abstr 680)

  77. Fishman MN, Thompson JA, Pennock GK, Gonzalez R, Diez LM, Daud AI, Weber JS, Huang BY, Tang S, Rhode PR et al (2011) Phase I trial of ALT-801, an interleukin-2/T-cell receptor fusion protein targeting p53 (aa264-272)/HLA-A*0201 complex, in patients with advanced malignancies. Clin Cancer Res 17:7765–7775. https://doi.org/10.1158/1078-0432.CCR-11-1817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Fishman MN, Vaena DA, Singh P, Picus J, Vaishampayan UN, Slaton J, Mahoney JF, Agarwala SS, Rosser CJ, Landau D et al (2015) Phase Ib/II study of an IL-2/T-cell receptor fusion protein in combination with gemcitabine and cisplatin in advanced or metastatic chemo-refractory urothelial cancer (UC). J Clin Oncol 33:4515

    Google Scholar 

  79. Sonpavde G, Rosser CJ, Pan C, Parikh RA, Nix J, Gingrich JR et al (2015) Phase I trial of ALT-801, a first-in-class T-cell receptor (TCR)-interleukin (IL)-2 fusion molecule, plus gemcitabine (G) for Bacillus Calmette Guerin (BCG)-resistant non-muscle-invasive bladder cancer (NMIBC). J Clin Oncol 34(2_suppl):451–451. https://doi.org/10.1200/jco.2016.34.2_suppl.451

    Article  Google Scholar 

  80. Kim PS, Kwilas AR, Xu W, Alter S, Jeng EK, Wong HC, Schlom J, Hodge JW (2016) Il-15 superagonist/IL-15RalphaSushi-Fc fusion complex (IL-15Sa/IL-15RalphaSu-Fc; ALT-803) markedly enhances specific subpopulations of NK and memory CD8+ T cells, and mediates potent anti-tumour activity against murine breast and colon carcinomas. Oncotarget 7:16130–16145

    PubMed  PubMed Central  Google Scholar 

  81. Gomes-Giacoia E, Miyake M, Goodison S, Sriharan A, Zhang G, You L, Egan JO, Rhode PR, Parker AS, Chai KX et al (2014) Intravesical ALT-803 and bcg treatment reduces tumor burden in a carcinogen induced bladder cancer rat model; a role for cytokine production and nk cell expansion. PLoS One 9:e96705. https://doi.org/10.1371/journal.pone.0096705

    Article  PubMed  PubMed Central  Google Scholar 

  82. Bailey SR, Nelson M, Butcher A, Bowers J, Meek M et al (2016) CD26 expression on T helper cells correlates with cell persistence and antitumor activity in vivo. J Immunol 196(1 Supplement):214.11

    Google Scholar 

  83. Angevin E, Isambert N, Trillet-Lenoir V, You B, Alexandre J, Zalcman G, Vielh P et al (2017) First-in-human phase 1 of YS110, a monoclonal antibody directed against CD26 in advanced CD26-expressing cancers. Br J Cancer 116(9):1126–1134. https://doi.org/10.1038/bjc.2017.62 (Epub 2017 Mar 14)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Railkar R, Sanford T, Krane S, Li QQ et al (2017) Flavoperidol as a novel therapeutic agent for bladder cancer. J Clin Oncol 35(suppl 6S):abstract 357

  85. Steinberg GD, Shore ND, Karsh LI, Bailen JL et al (2017) Immune response results of vesigenurtacel-I (HS-410) in combination with BCG from a randomized phase II trial in patients with non-muscle invasive bladder cancer (NMIBC). J Clin Oncol 35(6_suppl):319. https://doi.org/10.1200/JCO.2017.35.6_suppl.319

    Article  Google Scholar 

  86. Zhao J, Xu W, Zhang Z, Song R, Zeng S, Sun Y, Xu C (2015) Prognostic role of HER2 expression in bladder cancer: a systematic review and meta-analysis. Int Urol Nephrol 47(1):87–94. https://doi.org/10.1007/s11255-014-0866-z (Epub 2014 Nov 11)

    Article  CAS  PubMed  Google Scholar 

  87. Tagawa ST, Ocean AJ, Lam ET, Saylor PJ et al (2017) Therapy for chemopretreated metastatic urothelial cancer (mUC) with the antibody-drug conjugate (ADC) sacituzumab govitecan (IMMU-132). J Clin Oncol 35(6_suppl):327. https://doi.org/10.1200/JCO.2017.35.6_suppl.327

    Article  Google Scholar 

  88. Maude SL, Frey N, Shaw PA, Aplenc R, Barrett DM, Bunin NJ et al (2014) Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med 371(16):1507–1517. https://doi.org/10.1056/NEJMoa1407222

    Article  PubMed  PubMed Central  Google Scholar 

  89. Lee JY, Diaz RR, Cho KS, Lim MS, Chung JS, Kim WT et al (2013) Efficacy and safety of photodynamic therapy for recurrent, high grade nonmuscle invasive bladder cancer refractory or intolerant to bacille Calmette–Guérin immunotherapy. J Urol 190(4):1192–1199

    Article  PubMed  Google Scholar 

  90. Railkar R, Krane S, Li QQ, Sanford T, Choyke PL, Kobayashi H et al (2017) Epidermal growth factor receptor (EGFR) targeted photoimmunotherapy (PIT) for the treatment of EGFR expressing bladder cancer. J Clin Oncol 35(suppl 6S; abstract 291). https://doi.org/10.1200/JCO.2017.35.6_suppl.291

    Google Scholar 

Download references

Funding

There was no funding involved in writing or preparing or submission of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabeeh-ur-Rehman Butt.

Ethics declarations

Conflict of interest

The authors hereby declare no conflict of interest in writing this review article.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Butt, SuR., Malik, L. Role of immunotherapy in bladder cancer: past, present and future. Cancer Chemother Pharmacol 81, 629–645 (2018). https://doi.org/10.1007/s00280-018-3518-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-018-3518-7

Keywords

Navigation