Skip to main content

Advertisement

Log in

Pharmacokinetic and cytotoxic studies of pegylated liposomal daunorubicin

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Pegylated liposomes have been studied for nearly two decades. However, fewer pharmacological studies about its application in daunorubicin (DNR) than those in doxorubicin have been reported. In order to conduct a complete pharmacokinetic study, radiolabeled DNR was encapsulated in pegylated liposomes. Its in vitro drug release kinetics was determined to be in a slow manner, which was reflected in its cytotoxic effect on four cell lines. The lethal dose, plasma pharmacokinetics as well as tissue distribution of the formulation were evaluated in comparison with free DNR. The results revealed that liposomal daunorubicin significantly reduced the toxicity of the drug, with a half lethal dose of 29.35 mg/kg, compared with 5.45 mg/kg for free drug. Pharmacokinetic study of liposomal DNR demonstrated a slower clearance rate, an elevated area under the concentration–time curve, as well as increased half-lives compared to free drug. In addition, an altered tissue distribution of liposomal DNR was observed, with lower cardiac accumulation. Taken together, pegylated liposome-loaded DNR may be a promising anticancer drug and worth further therapeutic study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Allen TM (1994) Long-circulating (sterically stabilized) liposomes for targeted drug delivery. Trends Pharmacol Sci 15:215–220

    Article  PubMed  CAS  Google Scholar 

  2. Allen TM, Cullis PR (2004) Drug delivery systems: entering the mainstream. Science 303:1818–1822

    Article  PubMed  CAS  Google Scholar 

  3. Bandak S, Goren D, Horowitz A, Tzemach D, Gabizon A (1999) Pharmacological studies of cisplatin encapsulated in long-circulating liposomes in mouse tumor models. Anticancer Drugs 10:911–920

    Article  PubMed  CAS  Google Scholar 

  4. Bartlett GR (1959) Phosphorus assay in column chromatography. J Biol Chem 234:466–468

    PubMed  CAS  Google Scholar 

  5. Bolotin EM CR, Bar LK, Emanuel SN, Lasic DD, Barenholz Y (1994) Ammonium sulphate gradient for efficient and stable remote loading of amphopathic weak bases into liposomes and ligandoliposomes. J Liposome Res 4:455–479

    Article  Google Scholar 

  6. Colbern GT, Hiller A, Musterer RS, Pegg E, Henderson IC, Working P (1999) Significant increase in antitumor potency of doxorubicin HCl by its encapsulation in pegylated liposomes. J Liposome Res 9:523–538

    CAS  Google Scholar 

  7. Colbern GT, Vaage J, Donovan D, Uster P, Working P (2000) Tumor uptake and therapeutic effects of drugs encapsulated in long-circulation pegylated stealth® liposomes. J Liposome Res 10:81–92

    Article  CAS  Google Scholar 

  8. Drummond DC, Meyer O, Hong K, Kirpotin DB, Papahadjopoulos D (1999) Optimizing liposomes for delivery of chemotherapeutic agents to solid tumors. Pharmacol Rev 51:691–743

    PubMed  CAS  Google Scholar 

  9. Eckardt JR, Campbell E, Burris HA, Weiss GR, Rodriguez GI, Fields SM, Thurman AM, Peacock NW, Cobb P, Rothenberg ML et al (1994) A phase II trial of DaunoXome, liposome-encapsulated daunorubicin, in patients with metastatic adenocarcinoma of the colon. Am J Clin Oncol 17:498–501

    Article  PubMed  CAS  Google Scholar 

  10. Eucker J, Eikel D, Heider U, Jakob C, Zavrski I, Gatz F, Mergenthaler HG, Jungclas H, Possinger K, Sezer O (2003) Liposomal daunorubicin (DaunoXome) in multiple myeloma: a modified VAD regimen using short-term infusion. Anticancer Drugs 14:793–799

    Article  PubMed  CAS  Google Scholar 

  11. Fassas A, Buffels R, Anagnostopoulos A, Gacos E, Vadikolia C, Haloudis P, Kaloyannidis P (2002) Safety and early efficacy assessment of liposomal daunorubicin (DaunoXome) in adults with refractory or relapsed acute myeloblastic leukaemia: a phase I–II study. Br J Haematol 116:308–315

    PubMed  CAS  Google Scholar 

  12. Forssen EA, Coulter DM, Proffitt RT (1992) Selective in vivo localization of daunorubicin small unilamellar vesicles in solid tumors. Cancer Res 52:3255–3261

    PubMed  CAS  Google Scholar 

  13. Forssen EA, Male-Brune R, Adler-Moore JP, Lee MJ, Schmidt PG, Krasieva TB, Shimizu S, Tromberg BJ (1996) Fluorescence imaging studies for the disposition of daunorubicin liposomes (DaunoXome) within tumor tissue. Cancer Res 56:2066–2075

    PubMed  CAS  Google Scholar 

  14. Gabizon A, Catane R, Uziely B, Kaufman B, Safra T, Cohen R, Martin F, Huang A, Barenholz Y (1994) Prolonged circulation time and enhanced accumulation in malignant exudates of doxorubicin encapsulated in polyethylene-glycol coated liposomes. Cancer Res 54:987–992

    PubMed  CAS  Google Scholar 

  15. Guaglianone P, Chan K, DelaFlor-Weiss E, Hanisch R, Jeffers S, Sharma D, Muggia F (1994) Phase I and pharmacologic study of liposomal daunorubicin (DaunoXome). Invest New Drugs 12:103–110

    Article  PubMed  CAS  Google Scholar 

  16. Hempel G, Reinhardt D, Creutzig U, Boos J (2003) Population pharmacokinetics of liposomal daunorubicin in children. Br J Clin Pharmacol 56:370–377

    Article  PubMed  CAS  Google Scholar 

  17. Horowitz AT, Barenholz Y, Gabizon AA (1992) In vitro cytotoxicity of liposome-encapsulated doxorubicin: dependence on liposome composition and drug release. Biochim Biophys Acta 1109:203–209

    Article  PubMed  CAS  Google Scholar 

  18. Huwyler J, Yang J, Pardridge WM (1997) Receptor mediated delivery of daunomycin using immunoliposomes: pharmacokinetics and tissue distribution in the rat. J Pharmacol Exp Ther 282:1541–1546

    PubMed  CAS  Google Scholar 

  19. Lasic DD, Ceh B, Stuart MC, Guo L, Frederik PM, Barenholz Y (1995) Transmembrane gradient driven phase transitions within vesicles: lessons for drug delivery. Biochim Biophys Acta 1239:145–156

    Article  PubMed  Google Scholar 

  20. Newman MS, Colbern GT, Working PK, Engbers C, Amantea MA (1999) Comparative pharmacokinetics, tissue distribution, and therapeutic effectiveness of cisplatin encapsulated in long-circulating, pegylated liposomes (SPI-077) in tumor-bearing mice. Cancer Chemother Pharmacol 43:1–7

    Article  PubMed  CAS  Google Scholar 

  21. Papahadjopoulos D, Allen TM, Gabizon A, Mayhew E, Matthay K, Huang SK, Lee KD, Woodle MC, Lasic DD, Redemann C et al (1991) Sterically stabilized liposomes: improvements in pharmacokinetics and antitumor therapeutic efficacy. Proc Natl Acad Sci USA 88:11460–11464

    Article  PubMed  CAS  Google Scholar 

  22. Parr MJ, Ansell SM, Choi LS, Cullis PR (1994) Factors influencing the retention and chemical stability of poly(ethylene glycol)-lipid conjugates incorporated into large unilamellar vesicles. Biochim Biophys Acta 1195:21–30

    Article  PubMed  CAS  Google Scholar 

  23. Peleg-Shulman T, Gibson D, Cohen R, Abra R, Barenholz Y (2001) Characterization of sterically stabilized cisplatin liposomes by nuclear magnetic resonance. Biochim Biophys Acta 1510:278–291

    Article  PubMed  CAS  Google Scholar 

  24. Williams SS, Alosco TR, Mayhew E, Lasic DD, Martin FJ, Bankert RB (1993) Arrest of human lung tumor xenograft growth in severe combined immunodeficient mice using doxorubicin encapsulated in sterically stabilized liposomes. Cancer Res 53:3964–3967

    PubMed  CAS  Google Scholar 

  25. Young RC, Ozols RF, Myers CE (1981) The anthracycline antineoplastic drugs. N Engl J Med 305:139–153

    Article  PubMed  CAS  Google Scholar 

  26. Yuan F, Leunig M, Huang SK, Berk DA, Papahadjopoulos D, Jain RK (1994) Microvascular permeability and interstitial penetration of sterically stabilized (stealth) liposomes in a human tumor xenograft. Cancer Res 54:3352–3356

    PubMed  CAS  Google Scholar 

  27. Zamboni WC, Gervais AC, Egorin MJ, Schellens JH, Zuhowski EG, Pluim D, Joseph E, Hamburger DR, Working PK, Colbern G, Tonda ME, Potter DM, Eiseman JL (2004) Systemic and tumor disposition of platinum after administration of cisplatin or STEALTH liposomal-cisplatin formulations (SPI-077 and SPI-077 B103) in a preclinical tumor model of melanoma. Cancer Chemother Pharmacol 53:329–336

    Article  PubMed  CAS  Google Scholar 

  28. Zucchetti M, Boiardi A, Silvani A, Parisi I, Piccolrovazzi S, D’Incalci M (1999) Distribution of daunorubicin and daunorubicinol in human glioma tumors after administration of liposomal daunorubicin. Cancer Chemother Pharmacol 44:173–176

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This project was supported by the Chinese Hi-Tech R &D program of China (No: 2002AA412131). Principal investigator: Jie Ma, MD PhD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Ma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, H., Zhang, J., Han, Z. et al. Pharmacokinetic and cytotoxic studies of pegylated liposomal daunorubicin. Cancer Chemother Pharmacol 57, 591–598 (2006). https://doi.org/10.1007/s00280-005-0076-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-005-0076-6

Keywords

Navigation