Skip to main content

Advertisement

Log in

Strategy for Efficient Energy Management to solve energy problems in modernized irrigation: analysis of the Spanish case

  • Original Paper
  • Published:
Irrigation Science Aims and scope Submit manuscript

Abstract

While the modernization of irrigation techniques in recent years has improved water use efficiency, the substitution of open channels by pressurized pipes led to a substantial increase in the energy used in irrigated agriculture. Given the concern for energy savings and sustainability, official administrations have promoted several initiatives to improve energy efficiency in irrigated agriculture, and researchers have developed different tools for the same. Although energy audits have been conducted in irrigation networks managed by Water Users’ Associations, the implementation of energy conservation measures proposed in these audits has not been always successful. This paper, which reviews the energy aspects of irrigation systems modernized in recent decades in Spain and in other countries, considers the characteristics and special features of Water Users’ Associations and proposes an energy management system (EMS) for the same. The stages of the EMS are described, beginning with the definition of energy policy and the establishment, implementation and verification of energy plans, the essential conditions to guarantee the success of the EMS are described, in which energy audits are just a part of a process of continual improvement of energy efficiency. A Strategy for Efficient Energy Management has been implemented in a Water Users’ Association in southeast Spain. The improvement measures proposed in the first energy plan were implemented, and an increase from 60 to 65 % in average energy efficiency was achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

WUA:

Water Users’ Association

SEEM:

Strategy for Efficient Energy Management

EMS:

Energy Management System

References

  • Abadía R, Rocamora MC, Ruiz A, Puerto H (2008a) Energy efficiency in irrigation distribution networks I: theory. Biosyst Eng 101:21–27

    Article  Google Scholar 

  • Abadía R, Rocamora MC, Ruiz A (2008b) Protocolo de auditoría energética en comunidades de regantes. Instituto para Diversificación y Ahorro de la Energía, (IDAE) Serie Divulgación Ahorro y Eficiencia Energética en Agricultura nº 10. Ministerio de Industria, Turismo y Comercio, Madrid

  • Abadía R, Rocamora MC, Córcoles JI, Ruiz-Canales A, Martinez-Romero A, Moreno MA (2010a) Comparative analysis of energy efficiency in water users associations. Spa J Agric Res 8(S2):134–142

    Google Scholar 

  • Abadía R, Rocamora MC, Córcoles JI, Ruiz A, Martinez-Romero A, Moreno MA (2010b) Estudio comparativo sobre medidas de ahorro energético y económico en Comunidades de Regantes. Riegos y Drenajes XXI 172:14–18

    Google Scholar 

  • AENOR (2009) UNE 216501. Auditorías Energéticas: Requisitos. Asociación Española de Normalización y Certificación, Madrid

    Google Scholar 

  • AENOR (2010a) CEN/CLC/TR 16103:2010. Gestión energética y eficiencia energética. Glosario de términos. Asociación Española de Normalización y Certificación, Madrid

    Google Scholar 

  • AENOR (2010b) UNE-EN 16001 Sistemas de gestión energética. Requisitos con orientación para su uso. Asociación Española de Normalización y Certificación, Madrid

    Google Scholar 

  • Alexander PJ, Potter MO (2004) Benchmarking of Australian irrigation water provider businesses. Irrig Drain 53:165–173

    Article  Google Scholar 

  • Aliod R, Eizaguerri A, Estrada C, Perna E (1997) Dimensionado y análisis hidráulico de redes de distribución a presión en riego a la demanda: aplicación del programa GESTAR. Riegos y Drenajes XXI 92:22–38

    Google Scholar 

  • Allan T (1999) Productive efficiency and allocative efficiency: why better management may not solve the problem. Agric Water Manag 40:71–75

    Article  Google Scholar 

  • Arora H, LeChevalier MW (1998) Energy management opportunities. J AWWA 90(2):40–51

    CAS  Google Scholar 

  • Atkinson E, Elango K, Mohan S, Fadda G, Cinus S (2003) A rational approach to scheduling main-system maintenance. Irrig Drain Syst 17:239–261

    Article  Google Scholar 

  • Bos MG (1979) Standards for irrigation efficiencies of I.C.I.D. J Irrig Drain Div 105(IR1):37–43

    Google Scholar 

  • Bos MG (1997) Performance indicators for irrigation and drainage. Irrig Drain Syst 11:119–137

    Article  Google Scholar 

  • Bounds P, Kahler J, Ulanicki B (2006) Efficient energy management of a large-scale water supply system. Civ Eng Environ Syst 23(3):209–220

    Article  Google Scholar 

  • Cabrera E, Pardo MA, Cobacho R, Cabrera E Jr (2010) Energy audit of water networks. J Water Resour Plan Manag 136(6):669–677

    Article  Google Scholar 

  • Cai X, Rosegrant MW (2003) World water productivity: current situation and future options. In: Kijne JW, Barker R, Molden D (eds) Water productivity in agriculture: limits and opportunities for Improvement. CABI Publishing, UK, (in association with IWMI, Colombo, Sri Lanka), pp 163–178

  • Calejo MJ, Lamaddalena N, Teixeira JL, Pereira LS (2008) Performance analysis of pressurized irrigation systems operating on demand using flow-driven simulation modelling. Agric Water Manag 95:154–162

    Article  Google Scholar 

  • Carrillo-Cobo MT, Rodríguez Díaz JA, Montesinos P, López R, Camacho E (2010) Low energy consumption seasonal calendar for sectoring operation in pressurized irrigation networks. Irrig Sci 29(2):157–169

    Article  Google Scholar 

  • CAWMA, Comprehensive Assessment of Water Management in Agriculture (2007) Water for food, water for life: a comprehensive assessment of water management in agriculture. Earthscan and Colombo: International Water Management Institute, London

    Google Scholar 

  • Clement R (1966) Calcul des débits dans les réseaux d’irrigation fonctinnant à la demande. Houille Blanche 20(5):553–575

    Article  Google Scholar 

  • Clemmens AJ, Molden DJ (2007) Water uses and productivity of irrigation systems. Irrig Sci 25:247–261

    Article  Google Scholar 

  • Cohen R, Nelson B, Wolff G (2004) Energy down the drain. The hidden costs of California’s water supply. Natural Resources Defense Council, Pacific Institute, Oakland

    Google Scholar 

  • Córcoles JI, de Juan JA, Ortega JF, Tarjuelo JM, Moreno MA (2010) Management evaluation of Water Users Associations using benchmarking techniques. Agric Water Manag 98(1):1–11

    Article  Google Scholar 

  • Corominas J (2010) Agua y energía en el riego, en la época de la sostenibilidad. Ingeniería del Agua 17(3):219–233

    Google Scholar 

  • DIOPRAM (2003) Diseño óptimo de redes ramificadas 3.0. Manual de Usuario. Grupo Multidisciplinar de Modelación de Fluidos, Univ Politec Valencia, Valencia

  • FAO (2003) World agriculture: towards 2015/2030. Food and agriculture organization of the United Nations. Earthscan Publications Ltd., London

    Google Scholar 

  • Farmani R, Abadía R, Savic D (2007) Optimun design and management of pressurized branched irrigation networks. J Irrig Drain Eng ASCE 133(6):528–538

    Article  Google Scholar 

  • Fleming J (1989) Identification and implementation of effective pumping system energy cost savings. Pumping Cost Savings in the Water Supply Industry Seminar. Institution of Mechanical Engineers, London, pp 1–8

  • Framji K, Garg B, Luthra S (1983) Irrigation and drainage in the world. A global review. International Commission on Irrigation and Drainage, New Delhi

    Google Scholar 

  • Granados A (1990) Infraestructura de regadíos. Redes colectivas de riego a presión (2ª edn). Escuela Técnica Superior de Ingenieros de Caminos Canales y Puertos, Univ Politec, Madrid

  • Helweg OJ (1982) Economics of improving well and pump efficiency. Ground Water 20:556–562

    Article  Google Scholar 

  • Hennecke FW (1999) Life cycle costs of pumps in chemical industry. Chem Eng Process 38:511–516

    Article  CAS  Google Scholar 

  • Horta MA (2000) Mejora de la gestión de recursos hídricos: modernización de regadíos y asesoramiento al regante. SEDECK 1:45–51

    Google Scholar 

  • Huppert W, Svendsen M, Vermillion DL (2003) Maintenance in irrigation: multiple actors, multiple contexts, multiple strategies. Irrig Drain Syst 17:5–22

    Article  Google Scholar 

  • Huttunen H, Halme P (2002) Cost efficient centrifugal pump use and maintenance in the beet sugar industry. Zuckerindustrie 127:376–379

    Google Scholar 

  • Hydraulic Institute (2008) Optimizing pumping systems. A guide to improved energy efficiency, reliability and profitability. Hydraulic Institute, Parsippany, NJ

  • Hydraulic Institute & Europump (2001) Pump life cycle costs: a guide to LCC analysis for pumping systems. Hydraulic Institute, Parsippany, NJ

  • IDAE (2005) Estrategia de Ahorro y Eficiencia Energética en España 2004–2012: Plan de Acción 2005–2007. Instituto para la Diversificación y Ahorro de la Energía, Madrid

    Google Scholar 

  • IDAE (2007) Estrategia de Ahorro y Eficiencia Energética en España 2004–2012: Plan de Acción 2008–2012. Instituto para la Diversificación y Ahorro de la Energía, Madrid

    Google Scholar 

  • Jiménez-Bello MA, Martínez F, Bou V, Bartoli HJ (2010) Methodology for grouping intakes of pressurised irrigation networks into sectors to minimise energy consumption. Biosyst Eng 105(4):429–438

    Article  Google Scholar 

  • Katsifarakis KL (2008) Groundwater pumping cost minimization—an analytical approach. Water Resour Manag 22:1089–1099

    Article  Google Scholar 

  • Kayrbekova D, Markeset T (2009) Life cycle cost analysis in design of oil and gas production facilities to be used in harsh, remote and sensitive environments. Saf Reliab Risk Anal Theory Methods Appl 1–4:2955–2961

    Google Scholar 

  • Klein G, Krebs M, Hall V, O’Brien T, Blevins BB (2005) California’s water-energy relationship. California Energy Commission, Sacramento

    Google Scholar 

  • Labye Y, Olson MA, Galand A, Tsourtis N (1988) Design and optimisation of irrigation distribution network. Irrig Drain Paper 44. FAO, Rome

  • Lamaddalena N, Khila S (2011) Energy saving with variable speed pumps in on-demand irrigation systems. Irrig Sci 30(2):157–166

    Article  Google Scholar 

  • Lamaddalena N, Sagardoy JA (2000) Performance analysis of on-demand pressurized irrigation ystems. Irrig Drain Paper 59. FAO, Rome

  • Lecina S, Isidoro D, Playán E, Aragüés R (2010) Irrigation modernization and water conservation in Spain: the case of Riegos del Alto Aragón. Agric Water Manag 97(10):1663–1675

    Article  Google Scholar 

  • Letey J, Dinar A, Woodring C, Oster JD (1990) An economic analysis of irrigation systems. Irrig Sci 11:37–43

    Article  Google Scholar 

  • Lopez-Luque R, Reca J, Camacho E, Roldán J, Alcaide M (1995) Valoración energética y diseño óptimo de impulsiones con caudal variable. Ing Agua 2(1):19–24

    Google Scholar 

  • Luc JP, Tarhouni J, Calvez R, Messaoud L, Sablayrolles C (2006) Performance indicators of irrigation pumping stations: application to drill holes of minor irrigated areas in the Kairouan plains (Tunisia) and impact of malfunction on the price of water. Irrig Drain 55:85–98

    Article  Google Scholar 

  • Malano H, Burton M (2001) Guidelines for benchmarking performance in the irrigation and drainage sector. IPTRID-FAO, Rome

    Google Scholar 

  • Malano HM, Chien NV, Turral HN (1999) Asset management for irrigation and drainage infrastructure. Principles and case study. Irrig Drain Syst 13:109–129

    Article  Google Scholar 

  • Malano H, Burton M, Makin I (2004) Benchmarking performance in the irrigation and drainage sector: a tool for change. Irrig Drain 53:119–133

    Article  Google Scholar 

  • Malano HM, George BA, Davidson B (2005) Asset management modelling framework for irrigation and drainage systems: principles and case study application. Irrig Drain Syst 19:107–127

    Article  Google Scholar 

  • MAPA (2002) Plan Nacional de Regadíos Horizonte 2008. Ministerio de Agricultura. Pesca y Alimentación, Madrid

  • MARM (2006a) Hechos y cifras de la agricultura, la pesca y la alimentación en España (8ªed). Ministerio de Medio Ambiente y Medio Rural y Marino, Madrid

  • MARM (2006b) Plan de Choque de Modernización de Regadíos. Ministerio de Medio Ambiente y Medio Rural y Marino. Madrid. http://www.plandechoque-ahorrodeagua.es. Accessed July 2011

  • MARM (2010) Estrategia Nacional para la Modernización Sostenible de los Regadíos, Horizonte 2015. Spanish Ministry of the Environment and Rural and Marine Affairs, Madrid

    Google Scholar 

  • Ministerio de Economía (2001) RD 1164/2001, de 26 de octubre, por el que se establecen tarifas de acceso a las redes de transporte y distribución de energía eléctrica

  • Ministerio de Economía (2003) Estrategia de Ahorro y Eficiencia Energética en España 2004–2012, Madrid

  • MMA (2000) Libro Blanco del Agua en España. Ministerio de Medio Ambiente, Madrid

    Google Scholar 

  • Montero J, Martínez A, Valiente M, Moreno MA, Tarjuelo JM (2012) Analysis of water application costs with a centre pivot system for irrigation of crops in Spain. Irrig Sci. doi:10.1007/s00271-012-0326-4

    Google Scholar 

  • Moradi-Jalal M, Mariño MA, Afshar A (2003) Optimal design and operation of irrigation pumping stations. J Irrig Drain Eng 129(3):149–154

    Article  Google Scholar 

  • Moradi-Jalal M, Rodin SI, Mariño MA (2004) Use of genetic algorithm in optimization of irrigation pumping stations. J Irrig Drain Eng 130(5):357–365

    Article  Google Scholar 

  • Moreno MA, Planells P, Ortega JF, Tarjuelo JM (2007a) New methodology to evaluate flow rates in on-demand irrigation networks. J Irrig Drain Eng 133(4):298–306

    Article  Google Scholar 

  • Moreno MA, Carrión P, Planells P, Ortega JF, Tarjuelo JM (2007b) Measurement and improvement of the energy efficiency at pumping stations. Biosyst Eng 98:479–486

    Article  Google Scholar 

  • Moreno MA, Planells P, Córcoles JI, Tarjuelo JM, Carrión PA (2009) Development of a new methodology to obtain the characteristic pump curve that minimize the total cost at pumping stations. Biosyst Eng 102:95–105

    Article  Google Scholar 

  • Moreno MA, Ortega JF, Córcoles JI, Martínez A, Tarjuelo JM (2010a) Energy analysis of irrigation delivery systems: monitoring and evaluation of proposed measures for improving energy efficiency. Irrig Sci 28(5):445–460

    Article  Google Scholar 

  • Moreno MA, Córcoles JI, Tarjuelo JM, Ortega JF (2010b) Energy efficiency of pressurised irrigation networks managed on-demand and under a rotation schedule. Biosyst Eng 107(4):349–363

    Article  Google Scholar 

  • Moreno MA, Córcoles JI, Moraleda DA, Martínez A, Tarjuelo JM (2010c) Optimization of underground water pumping. J Irrig Drain Eng 136(6):414–420

    Article  Google Scholar 

  • Murray-Rust H, Svendsen M, Burton M, Molden DJ (2003) Irrigation and drainage systems maintenance: needs for research and action. Irrig Drain Syst 17:129–140

    Article  Google Scholar 

  • Ortega JF, de Juan JA, Tarjuelo JM (2005) Improving water management: the irrigation advisory service of Castilla-La Mancha (Spain). Agric Water Manag 77(1–3):37–58

    Article  Google Scholar 

  • Pelli T, Hitz HU (2000) Energy indicators and savings in water supply. J Am Water Works Assoc 92(6):55–62

    CAS  Google Scholar 

  • Planells P, Carrión P, Ortega F, Moreno MA, Tarjuelo JM (2005) Pumping selection and regulation for water-distribution networks. J Irrig Drain Eng 131(3):273–281

    Article  Google Scholar 

  • Planells P, Ortega JM, Tarjuelo JM (2007) Optimization of irrigation water distribution networks, layout included. Agric Water Manag 88:110–118

    Article  Google Scholar 

  • Playán E, Mateos L (2006) Modernization and optimization of irrigation systems to increase water productivity. Agric Water Manag 80:100–116

    Article  Google Scholar 

  • Plusquellec H (2009) Modernization of large-scale irrigation systems: is it an achievable objective or a lost cause? Irrig Drain 58:S104–S120

    Article  Google Scholar 

  • Puerto HM, Melián A, Rocamora MC, Ruiz A, Cámara JM, Abadía R (2006) Social and irrigation water management issues in some water user’s associations of the Low Segura River Valley (Alicante, Spain). WIT Trans Ecol Environ 96:205–214

    Article  Google Scholar 

  • Pulido-Calvo I, Roldán J, López-Luque R, Gutiérrez-Estrada JC (2003a) Water delivery system planning considering irrigation simultaneity. J Irrig Drain Eng 129(4):247–255

    Article  Google Scholar 

  • Pulido-Calvo I, Roldán J, López-Luque R, Gutiérrez-Estrada JC (2003b) Demand forecasting for irrigation water distribution systems. J Irrig Drain Eng 129(6):422–431

    Article  Google Scholar 

  • Pulido-Calvo I, Montesinos P, Roldán J, Ruiz-Navarro F (2007) Linear regressions and neural approaches to water demand forecasting in irrigation districts with telemetry systems. Biosyst Eng 97:283–293

    Article  Google Scholar 

  • Reeves DT (1960) Deterioration of a centrifugal pump in service. Allen engineering review

  • Rocamora C, Abadía R, Ruiz A, Puerto H, Melián MA (2008) Energy efficiency in irrigation: energy audits and qualification of Water Users’ Associations. AgEng 2008, international conference on agricultural engineering. agricultural and biosystems engineering for a sustainable world. Hersonisos, Greece

  • Rodríguez Díaz JA, López Luque R, Carrillo-Cobo MT, Montesinos P, Camacho E (2009) Exploring energy saving scenarios for on-demand pressurised irrigation networks. Biosyst Eng 104:552–561

    Article  Google Scholar 

  • Rodríguez Díaz JA, Camacho E, Blanco M (2011) Evaluation of water and energy use in pressurized irrigation networks in southern Spain. J Irrig Drain Eng 137(10):644–650

    Article  Google Scholar 

  • Rodríguez JA, Camacho E, López R, Pérez L (2008) Benchmarking and multivariate data analysis techniques for improving the efficiency of irrigation districts: an application in Spain. Agric Syst 96:250–259

    Article  Google Scholar 

  • Rossman LA (1997) Epanet: users manual. Risk reduction engineering laboratory office of research and development. United States Environmental Protection Agency, Cincinnati

    Google Scholar 

  • Saidur R (2010) A review on electrical motors energy use and energy savings. Renew Sustain Energy Rev 14:877–898

    Article  CAS  Google Scholar 

  • Tarjuelo JM, De Juan JA, Moreno MA, Ortega JF (2010) Review: water resources deficit and water engineering. Span J Agric Res 8(S2):102–121

    Google Scholar 

  • UN Water (2007) Coping with water scarcity. Challenge of the twenty-first century. World Water Day 2007. http://www.fao.org/nr/water/docs/escarcity.pdf. Accessed 18 July 2011

  • Vera J, Abadía R, Mora M, Rocamora MC (2010) Eficiencia energética de instalaciones de bombeo en pozos para extracción de aguas de riego subterráneas. XXVIII Congreso Nacional de Riegos AERYD, León, June 15–16

  • Waghmode LY, Birajdar RS, Joshi SG (2006) A life cycle cost analysis approach for selection of a typical heavy usage multistage centrifugal pump. Proceedings of the 8th Biennial Conference on Engineering Systems Design and Analysis 2:865–873

    Google Scholar 

  • WEC (2010) Energy efficiency: a recipe for success. World Energy Council, London

    Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the Spanish Ministry of Science and Innovation for funding the TRACE project “Sostenibilidad en el uso del agua y energía en el regadío” (“Sustainability in energy and water use in irrigation”), reference PET2008_0175_02.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Rocamora.

Additional information

Communicated by J. Kijne.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rocamora, C., Vera, J. & Abadía, R. Strategy for Efficient Energy Management to solve energy problems in modernized irrigation: analysis of the Spanish case. Irrig Sci 31, 1139–1158 (2013). https://doi.org/10.1007/s00271-012-0394-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00271-012-0394-5

Keywords

Navigation