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Abstract
Tree crops such as cocoa and oil palm are important to smallholders’ livelihoods and national economies of tropical producer
countries. Governments seek to expand tree-crop acreages and improve yields. Existing literature has analyzed
socioeconomic and environmental effects of tree-crop expansion, but its spatial effects on the landscape are yet to be
explored. This study aims to assess the effects of tree-crop farming on the composition and the extent of land-cover
transitions in a mixed cocoa/oil palm landscape in Ghana. Land-cover maps of 1986 and 2015 produced through ISODATA,
and maximum likelihood classification were validated with field reference, Google Earth data, and key respondent
interviews. Post-classification change detection was conducted and the transition matrix analyzed using intensity analysis.
Cocoa and oil palm areas have increased in extent by 8.9% and 11.2%, respectively, mainly at the expense of food-crop land
and forest. The intensity of forest loss to both tree crops is at a lower intensity than the loss of food-crop land. There were
transitions between cocoa and oil palm, but the gains in oil palm outweigh those of cocoa. Cocoa and oil palm have
increased in area and dominance. The main cover types converted to tree-crop areas are food-crop land and off-reserve
forest. This is beginning to have serious implications for food security and livelihood options that depend on ecosystem
services provided by the mosaic landscape. Tree-crop policies should take account of the geographical distribution of tree-
commodity production at landscape level and its implications for food production and ecosystems services.
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Introduction

Landscapes face increasing pressure to produce more food
and fiber commodities to meet the rising demands of an
ever-growing global population (Meyfroidt et al. 2014;
Laurance et al. 2014). The growing expansion of agri-
cultural commodities occurs at the detriment of biodiversity,
carbon storage, water preservation, and other ecosystem
services needed to ensure food security and livelihoods
(e.g., Hurni et al. 2015; Pradhan et al. 2015). A significant
part of these commodities are tree crops such as oil palm,
cocoa, and coffee, which target high-end markets in the
global North (Ofori et al. 2014; Ros-Tonen et al. 2015).
Agricultural policies in developing countries focus pri-
marily on value chain integration in these high-end markets
(e.g., Ros-Tonen et al. 2015).

In Ghana, for instance, the government aims to moder-
nize tree-crop production and increase its productivity to
benefit from growing global demand, and to boost
employment and food security (Asante-Poku and Angelucci
2013; Angelucci 2013; MASDAR 2011; MoFA 2012).
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Cocoa and oil palm are leading crops in terms of area
(1.63 Mha and 397,000 ha, respectively) and farmer parti-
cipation (794,129 and 520,100 households, respectively)
(GSS 2014). Cocoa is Ghana’s main export product, con-
tributing 13.3% of the gross domestic product (GDP)
(MoFA 2013). Oil palm is mainly absorbed by the local
market as edible oil and crude oil in the soap industry, for
which there are internal and regional market deficits of
32,000 tons and 450,000 tons, respectively (MASDAR
2011). Its contribution to Ghana’s GDP is negligible (1%)
(Ibid.), but market deficits suggest growth potential.
Increasing production areas and yields of these sectors are
critical to achieving the objectives of Ghana’s tree-crop
policy (MoFA 2012).

The consequences of tree-crop expansion for landscape
components and multifunctionality are not well understood.
This expansion implies encroachment into forests and
conversion of other land-cover types (Lambin and Mey-
froidt 2011). In particular, cocoa expansion is considered a
key driver of deforestation in Ghana (Gockowski and
Sonwa 2011; MLNR 2012) and literature suggests trade-
offs between tree-crop production (oil palm and cocoa) and
food security (Anderman et al. 2014). Earlier studies have
assessed the effects of commodity-driven landscape change
on livelihoods (e.g., Castella et al. 2013), but the main
analysis focused on non-spatial aspects. Existing literature
has also addressed landscape composition change in general
(e.g., Margono et al. 2012; Antwi et al. 2014; Kusimi 2015),
but studies that looked at the spatial-temporal dynamics of
the expansion of agricultural commodities in mosaic land-
scapes are scarce (Abdullah and Nakagoshi 2006). The few
studies addressing variations in tree-crop landscapes tend to
amalgamate tree crops (cocoa and oil palm) with open forest
(Alo and Pontius 2008; Adjei et al. 2014; Antwi et al. 2014;
Kusimi 2015) or other forms of agriculture (Akinyemi
2013; Barima et al. 2016; Koranteng et al. 2016; Hackman
et al. 2017). Furthermore, there is little knowledge about the
degree of conversions among cocoa and oil palm, and to
other land uses (losses) or vice versa (gains), and the
respective spatial patterns and processes underlying transi-
tions in such landscapes. Anecdotal evidence suggests
however that in some regions cocoa is being converted to
other land uses due to declining economic returns (Asante-
Poku and Angelucci 2013).

This study aims to address these knowledge gaps by
analyzing the landscape compositional dynamics in Gha-
na’s high forest zone due to the expansion (or shrinkage) of
tree-crop cultivation. It specifically addresses the question
of how tree-crop expansion drives the spatial transitions in
the mosaic landscape in the Eastern Region of Ghana.

The remainder of the paper is structured as follows. The
Materials and Methods section describes the landscape
under study, the materials used (mainly two satellite

images), and their properties. It further elaborates on the
pre-processing, image classification, change detection, and
the analysis of the transition matrix. The results section
primarily presents the findings in terms of changes in
landscape composition, land-cover change, and the inten-
sities of change, further interpreted and compared with the
broader literature in the discussion section. The study con-
cludes with answering the main question and highlighting
implications and suggestions for future research and land-
scape governance.

Materials and Methods

Study Area

The study area is a mosaic landscape located in the south-
western corner of Ghana’s Eastern Region between latitude
5° 34’17”N and 6° 15’25”N, and longitude 0°47’10” W and
1° 9’55”W. It covers four adjoining administrative areas—
Akyemansa, Denkyembour, and Kwaebibirem Districts—and
Birim Central Municipality (Fig. 1). The landscape is here-
after referred to as the Akyemansa–Kwaebibrem landscape.
Key towns and villages within this landscape include Kade,
Ofoase, Ayirebi, Otwereso, Wenchi, Soaba, and Damang.

Ecologically, the area lies within the semi-deciduous
forest ecological zone of Ghana and constitutes an integral
part of the Guinea-Congolian biodiversity hotspot stretching
along the West African coast (Hall and Swaine 1981). This
ecological zone is affected by considerable transformation
due to mining, agriculture, and settlement. The resulting
landscape is a mosaic of tree crops, annual crops, remnants
of the original closed canopy forest maintained as forest
reserves, and patches of off-reserve forest.

The area experiences relatively large quantities of rain-
fall, a characteristic of the wet semi-equatorial climatic
zone. Precipitation is bimodal, giving rise to two main
raining seasons—March to July and August to October—
with average rainfall ranging between 1500 mm and
2000 mm. Annual mean minimum and maximum tem-
peratures are 25 °C and 27 °C, respectively. The landscape
is noted for moderate to high relative humidity ranging
between 55% in the dry season to 70% during the wet
season (ERCC 2016). These climatic conditions have been
fundamental to the success of tree-crop agriculture in the
area (Michel-Dounias et al. 2015). Agriculture is the
mainstay of people’s livelihoods, employing about 74% of
the population (ERCC 2016).

The selected landscape presents favorable environmental
conditions for the production of the focal tree crops, cocoa
and oil palm. The area had some cocoa farms prior to 1940,
while oil palm plantations developed since the late 1970s,
and both have coevolved in the landscape till present
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(Michel-Dounias et al. 2015). This makes the area suitable
for the study of the combined landscape effects of these
crops.

Data and Materials

Data used for the study includes two satellite images from
Landsat (Table 1), land-cover reference data from fieldwork
and Google Earth, and land-cover descriptions obtained
through key informant interviews with chiefs and elderly
people. The interviews were also analyzed for local per-
ceptions of the change process, implications for ecosystem
services, and future outlook of the Akyemansa–
Kwaebibrem landscape. Landsat images were selected
because of their geographic coverage of the study area,
availability of a historical archive since the 1970s, and
medium spatial and multispectral resolution, which all
together makes them suitable for vegetation change detec-
tion at landscape scale (Xie et al. 2008; Vittek et al. 2014).
Landsat images are also freely accessible from online data
clearing houses. A random visual assessment of image tiles

in this location revealed heavy presence of clouds and haze
posing data utility constraints.

A total of 158 surface reflectance images covering the
period 1986–2015 were downloaded from the United States
Geological Survey online databases through the Earth
Explorer online data platform (http://earthexplorer.usgs.
gov/). All the 158 images underwent pre-data selection
processes using R 3.3.2 software to select those image
datasets that fulfilled the following criteria: distribution and
minimal area lost to clouds and thick haze, data quality, and
being captured in the same season. A C-Language Function
of Mask layer served to mask out clouds and then the
Normalized Difference Vegetation Index was computed
from all datasets to assess the quality of differentiating
vegetation types. Two of the images, 1986 and 2015
respectively, emerged as being suitable for further analysis
(Table 1). Both images were anniversary images captured in
the dry season and this reduced anomalies in reflectance
resulting between the datasets from phenological changes
and sun angle differences (Fichera 2012; Wondrade et al.
2014). Preferably more than two time point images and wet

Fig. 1 Location of the Akyemansa–Kwaebibrem landscape in the cocoa- and oil palm- growing regions in Ghana (Shapefile sources: Ghana at a
glance, EPA and DIVA-GIS)
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season images are needed for trends analysis and differ-
entiating various vegetation types (Wondrade et al. 2014;
Diwediga et al. 2017), but the limited availability of cloud-
and thick haze-free images restricted the image selection
dates and periods to the dry season.

Historical data for both training and validating the clas-
sification of the 1986 Landsat 5 Thematic Mapper (TM)
image was not available (Diwediga et al. 2017). In the
absence of historical maps, knowledge about landscape
composition in 1986 was obtained through key respondent
interviews with 30 chiefs and elderly people from Ofoase,
Ayirebi, Kade, and Soabe. To identify the geographical
location of land-cover types, unchanged areas in 2015 were
identified and applied to the classification of the 1986
image. Subsequently, image interpretation elements (tone,
color, shape, and pattern) were also applied to identify the
spread of land-cover types. A total of 49,454,863 pixels (59
polygons) were collected as reference data from “known”
features within the unprocessed 1986 Landsat 5 TM image
and from Google Earth images with a view to assessing
quality of the classification.

Unlike the 1986 image, reference data (in total 908
polygons) for the 2015 Landsat 8 Operational Land Imager
(OLI) image was gathered through field data collection and
data extraction from Google Earth. Field data was collected
by mapping representative polygon sample units of the
identified land-cover types in the landscape with a handheld
Global Positioning System. Attribute data included land-
cover types, description of the surrounding environment,
digital photos, and, where possible, oral information about
changes. An area approach rather than a single point loca-
tion was used to ensure that the sampled areas coincided
with the respective land-cover types on the image. The field
samples were augmented with 313 additional polygons
extracted from high spatial resolution Google Earth images
to cover areas that were inaccessible on the ground
(Diwediga et al. 2017). The extraction was done through
visual identification of recognizable representative land-
cover types and on-screen manual digitizing in the Google
Earth platform (Fig. 2). All the 908 polygons from both
sources were combined, sorted by land-cover types, and
systematically divided into training (469) and validation
(439) datasets by selecting every other sample into either
group.

Land-cover Mapping

The process of land-cover mapping includes development
of the land-cover classification scheme, image pre-proces-
sing, and image classification (Fig. 3).

There is no unique land-cover classification scheme for
Ghana. Available schemes differ according to the research
objective of the various landscape studies. This study
developed a land-cover classification scheme drawing on
Asubonteng (2007), Adjei et al. (2014), and Asare et al.
(2014), while consciously including context-specific fea-
tures in the study area (cocoa, oil palm, and food crops).
The scheme is both locally relevant and fits the research
focus on tree-crop farming (Table 2).

Pre-processing refers to initial operations administered to
the raw satellite images to remove or reduce errors due to
sensor and platform-specific radiometric and geometric
distortions. Atmospheric defects are common defects
usually associated with most optical images of the tropics,
including the southern highland areas of Ghana. However,
the use of surface reflectance images pre-processed with
Landsat Ecosystem Disturbance Adaptive Processing Sys-
tem and Landsat Surface Reflectance Code reduced geo-
metric and atmospheric effects on Landsat TM and Landsat
OLI, respectively. In addition, dark object subtraction was
employed to reduce the effects of remaining haze on both
images. In the absence of clearly visible water bodies for
dark pixel reference value, minimum pixel values were
subtracted from the images at the band level using ENVI
5.0 Classic software. Both the 1986 and 2015 images were
spatially overlaid and swiped to ensure that they are co-
registered and devoid of any spatial mismatch. Spatial
overlay is essential in a change-detection process to ensure
that changes detected represent actual changes in pixel
classes between the compared images and are not due to
registration error between the images. Finally, both images
were subsetted to the extent of the landscape.

Land-cover classification encompasses the process of
grouping similar pixels into a class and assigning them
land-cover type labels (Campbell and Wynne 2011). Dif-
ferent classification approaches were applied to 1986 and
2015 due to the difference in data availability for both
images. Iterative Self Organizing Data Analysis (ISO-
DATA) unsupervised classification was used for the 1986

Table 1 List of Landsat images acquired for the study

Landsat scene ID Acquisition date Satellite/sensor Path
/row

Spatial
resolution

No. of
bands

LT51940561986363XXX09 1986/12/29 Landsat 5 / Thematic Mapper (TM) 194/056 30 m 7

LC81940562015363LGN00 2015/12/29 Landsat 8 / Operational Land Imager and the Thermal
Infrared Sensor (OLI/TIRS)

194/056 30 m 11
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image due to the unavailability of an original historical map
and field reference data, whereas supervised maximum
likelihood classification (MLC) was used in the case of the
2015 image because of the readily available field reference
data.

Using ISODATA unsupervised classification algorithm
in ENVI 5.0 classic software, the 1986 image was classified
into 80 initial classes using the classification scheme pre-
sented in Table 2, which allows the natural grouping of
pixel values in images. The larger number of classes beyond
the desired number made it possible to separate closely
related, but different classes within the landscape. The
classes were further aggregated into the seven classes listed
in Table 2. Identification of land-cover types and clustering
into final classes were based on unchanged land-cover types
between 1986 and 2015 (Wondrade et al. 2014; Diwediga
et al. 2017), and the use of image interpretation elements
(Campbell and Wynne 2011).

Spectral signatures were extracted from the 2015 image
using the training dataset (469) and applied in a MLC in
ENVI 5.0 Classic software to categorize the image in pre-
defined land-cover types in the landscape. Known sites of
mixed young oil palm that were misclassified as forest in
the 2015 image were manually digitized on screen into their
correct classes (oil palm) to improve the accuracy and utility
of the map (Zhou et al. 2014).

Post-classification accuracy assessment was performed
as an integral part of the classification processes of both
images. Validation datasets for the 1986 and 2015 images
were used as reference to assess the quality of the thematic
land-cover maps of the respective years. The resultant pixel-
based error matrices from the accuracy assessment were

converted to area proportions of the landscape to recalculate
a new set of accuracy parameters considering the stratifi-
cation (Olofsson et al. 2014). Uncertainties and adjusted
areas were also computed for both land-cover maps.

Change Detection

Change detection was carried out to identify and assess
transformations that have occurred in the landscape over the
29-year period under study. The assessment focused on
proportions of change and rates, spatial distribution of
change, transitions over time (Lu et al. 2004), and changes
in the land-cover composition of the landscape. Post-
classification change detection technique was employed to
compare the independently produced land-cover maps for
1986 and 2015 (Dalle et al. 2011; Fichera 2012; Zhou et al.
2014). Although being time-consuming and sensitive to the
combined errors from both images, the technique is the
most commonly used in land-cover change monitoring and
assessment literature (e.g., Fichera 2012; Adjei et al. 2014;
Wondrade et al. 2014). The technique’s ability to reduce
effects of sensor, atmospheric, and environmental differ-
ences on the outputs and the generation of a transition
matrix made it a suitable choice for the study (Coppin et al.
2002; Lu et al. 2004; Tewkesbury et al. 2015). The image
pair resulted in a land-cover change map and a transition
matrix. The matrix consists of the sizes of land-cover units
in the initial year and the conversions that have occurred
until the end year. The values in the diagonal of the tran-
sition matrix represent persistent land-cover areas per
category, whereas the off-diagonal values are the transitions
in land-cover types during the 29-year period. The matrix

Fig. 2 Clips of land-cover types (extracted from Google Earth), representing a forest, b food crop and fallow, c cocoa, d oil palm, e citrus, f water,
and g built-up/bare area
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includes gross losses, gross gains, net changes and swaps to
generate further insights into the nature of changes in the
landscape (Pontius et al. 2004; Alo and Pontius 2008).
Gross losses refer to the sum of all proportions per indivi-
dual land-cover type in 1986 that had changed to other land-
cover types by 2015 and is calculated by subtracting the
persistence from the total in the right-hand column (Pontius
et al. 2004). Gross gains are the sum of all areas per land-
cover type converted from other land-cover types by 2015;
the column totals minus the persistence (ibid.). The absolute
difference between gross gain and gross loss is the net
change. A swap occurs when a land-cover type gains in one
location and loses equal amounts in one or more other

locations in the landscape. A swap is calculated as the
difference between the total change and the net change
between 1986 and 2015 (Pontius et al. 2004; Alo and
Pontius 2008).

The annual rate of change (R) was computed for all land-
cover components in the landscape using the widely
adopted synergized formula drawn from the compound
interest law and mean annual rate of change R (Puyravaud
2003).

R ¼ 1
t2 � t1ð Þ

� �
ln

A2

A1

� �
ð1Þ

Fig. 3 The land-cover mapping
process
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Where A1 and A2 are the areas of land-cover types at time t1
and t2, respectively. A negative signed rate of change
represents a decline in area per year, whereas positive rates
are an increase in area per year over the researched period.

Intensity Analysis

The transition matrix of the change detection provides a
general overview of land-cover stocks in the landscape and
transfers among land-cover categories between 1986 and
2015. However, it fails to reveal the underlying processes
that drove transition patterns in the landscape between 1986
and 2015 (Pontius et al. 2004), which may lead to erroneous
policy recommendations. Intensity analysis was applied to
generate insights into the patterns and processes in the
observed changes among tree crops and other components
in the mosaic landscape (Aldwaik and Pontius 2012). This
quantitative framework explains the dynamic land-cover
transitions in the same location between different time
points at three levels: interval, category, and transition
(Aldwaik and Pontius 2012). Analysis at interval level
considers differences in land-cover change between differ-
ent time intervals—not applicable here because we consider
one time interval only. The intensity analysis in this study
was implemented at the category and transition levels,
respectively, using spreadsheets based on Aldwaik and
Pontius’s (2012) equations. The analysis at category level
focuses on the size and intensity of gross gains and losses
per land-cover category over the time period under study.
Transition level analysis assesses the variation in size and
intensity of specific transitions among the categories that are
available for that transition. Both category and transition
level intensities are compared with uniform intensity lines,
which represent the value under a hypothetical condition of
uniform distribution of change across all categories. If a
category intensity exceeds that of the uniform line, then the

change of that category is deemed relatively fast (referred to
as active). If it does not reach the uniform line, the transition
is relatively slow (referred to as dormant) during the given
time interval (Zhou et al. 2014). Similarly, if a particular
gaining or losing category has a transition intensity that
passes the uniform intensity line it is considered to be tar-
geting specific land-cover categories, and when it does not
reach the uniform intensity line it is considered to avoid
these categories (Aldwaik and Pontius 2012).

Results

Land-cover Mapping in 1986 and 2015

In 1986, the Akyemansa–Kwaebibrem landscape consisted
of seven main land-cover types of varying proportions and
spatial distribution (Fig. 4), with forest (28.8%), food crops
(27%), and cocoa (24.7%) dominating, and oil palm occu-
pying a mere 14.9%. Two main forest areas were located in
the north and southwestern corner of the landscape,
respectively, with the first being the largest patch of con-
tiguous forest in the landscape. The central portion was
made up of cocoa interspersed with forest and a few food-
crop patches, whereas larger areas of food crops occurred in
the west and oil palm clusters were found scattered over the
eastern part of the studied landscape. Food-crop land sur-
rounded human settlements and transportation networks
constituting built-up/bare areas were spreading outwardly at
varying extents. Exposed water surface was insignificant in
the landscape.

In 2015, the key components of the landscapes had
remained the same, but changes had occurred in both the
spatial distribution and areal extents of the land-cover types
(Fig. 5), with cocoa (33.6%) and oil palm (26.1%) having
become the prevailing land-cover types in 2015, followed

Table 2 Land-cover
classification scheme used for
the study

Land-cover
type

Description

Built-up/bare Areas with high and low intensities of infrastructural development and exposed soil
surfaces with little or no capacity to support plant life. This class includes roads (tarred
and untarred), towns, waste lands, and rock outcrops.

Food crops Land primarily used for the production of food, mainly annual and biannual crops. It also
includes natural vegetation areas that oscillate between production and fallow periods in a
food production cycle. The latter are predominantly grass and shrubs.

Cocoa Small- to large-scale cocoa farms of different tree densities and age categories

Oil palm Small- to large-scale oil palm farms of different tree intensities and age categories.
Naturally occurring oil palm along water bodies is included in this class.

Other tree
crops

Comprises all other tree-crop plantations in the landscape, mainly rubber and citrus.

Forest Naturally growing woody tree vegetation clusters with stems reaching 5 m height.
Bamboo clusters and timber plantations are included.

Water All forms of exposed water surfaces including rivers, reservoirs, and ponds.
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Fig. 4 a Classified land-cover map of 1986 (data source for classification: Landsat 5 1986). b Proportions of the land-cover types in the landscape
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Fig. 5 a Classified land-cover map 2015 (data source for classification: Landsat 8 2015). b Proportions of the land-cover types in the landscape
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by forest (16.9%) and food crops (16.2%). The minor land-
cover types were other tree crops (3.6%), built-up/bare
(3%), and water (0.6%). In 2015, the landscape was divided
into three main areas with cocoa stretching from the west to
middle, oil palm being mainly in the east, and forest con-
centrated in the central-north of the landscape. Beyond
these broader divisions, a few patches of forest, cocoa, and
oil palm were scattered across the landscape devoid of any
unique pattern. Food crops and trees other than cocoa and
oil palm are found in smaller patches interspersing with
cocoa and oil palm areas. Water runs through the oil palm
areas on the eastern side with some ponds on the river
banks. Built-up/bare areas have a line-and-node pattern
running diagonally from the north-western corner to the
middle central part of the landscape, and another one run-
ning to the north eastern corner (Figs. 4a and 5a).

The pixel-based overall accuracies of the 1986 and 2015
land-cover maps were 91.2% and 78.8%, respectively
(Table 3). However, the estimated area proportions reduced
the accuracies of both years by about 6%. The accuracy of
the 1986 classified map aligned better with the respective
reference data than the 2015 classified map. For water, the
study recorded the lowest producer accuracy (4%) in the
1986 map, whereas in 2015 other tree crops had low pro-
ducer (45%) and user (49%) accuracies. Uncertainties in
land-cover type areas in both maps and their adjusted areas
are found in Table 7 in the Appendix.

Land-cover Change, Change Rates, and Landscape
Transitions

Table 4 displays stock changes between 1986 and 2015 and
their rates of change. Comparing surface areas between
1986 and 2015 shows that all land-cover types have
undergone varying degrees of change in size at different

rates. Forest and food-crop land coverage declined by
11.9% (135.14 km2) and 10.7% (121.5 km2), respectively.
With an annual change rate of 1.84%, forest accounts for
the largest change in the landscape. Food-crop land changed
at an annual rate of 1.75% in a decreasing direction. All
other land-cover types increased in size and proportion. Oil
palm recorded the largest positive change in land-cover size
(11.2%), followed by cocoa (8.9%), other tree crops
(1.67%), water (0.55%), and built-up area (0.3%). Changes
in oil palm and cocoa occurred at 1.93% and 1.06% per
annum, respectively. Considering their initial extent, water
(0.44 km2) and other tree crops (22.04 km2) changed at rates
of 9.4% and 2.1%, respectively to achieve their sizes in
2015 (Table 4). Water recorded the fastest rate in the
landscape. The smallest change rate was seen in the built-up
area (0.4%).

The landscape transition matrix (Table 5) demonstrates
the gross gains and gross losses, outlining the details of land
transfers among land-cover types over the 29 years period.
The persistence in the landscape amounts to 377.8 km2

constituting 33.3% of the entire landscape, implying that
66.7% of the landscape was subject to land transitions.
Gross gains in a land-cover type means an equal area of
gross loss in other land-cover types. The landscape has a
relatively high change-to-persistence ratio, a sign of high
dynamism in the landscape. Major transitions within the
landscape are food crops–cocoa–food crops, food crops–oil
palm–food crops, forest–cocoa–forest, and cocoa–oil
palm–cocoa.

By 2015, food-crop land lost 235.14 km2 (20.73%),
accounting for the highest gross loss in the study area. It
gained 113.64 km2 (10%) as the third highest gross gainer
in the landscape (Table 5), leaving a net negative change of
121.5 km2 (10.71%). In addition to the gains and losses,
swaps amounted to 227.28 km2 (20.03%) (Table 6). The

Table 3 Summary of accuracy
estimates based on area
proportion estimates for 1986
and 2015

1986 Land-cover map

Built-up/
bare

Food
crops

Cocoa Oil palm Other tree
crops

Forest Water

Overall accuracy= 85.2%;
*91.2

Usera 96% 78% 82% 80% 91% 95% 100%

Producerb 94% 90% 92% 83% 53% 83% 4%

2015 Land-cover map

Built-up/
bare

Food
crops

Cocoa Oil palm Other tree
crops

Forest Water

Overall accuracy= 73.0%;
*78.8

User 97% 72% 73% 89% 49% 50% 85%

Producer 95% 68% 91% 64% 45% 68% 92%

aUser accuracy refers to errors of commission (e.g., erroneously including cocoa in the forest category)
bProducer accuracy refers to errors of omission (e.g., excluding water hidden under canopy)
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high disparity between swaps and net changes indicates
large location exchanges of food-crop land with other land-
cover types. Significant replacements of food-crop land
were mainly from cocoa (9.16%), oil palm (7.20%), and
forest (2.05%). In spite of the swaps and net changes in
food-crop land, 6.22% of the landscape was maintained
under persistent food-crop land between 1986 and 2015.

Likewise, forest recorded a loss of 199.71 km2 (17.6%).
Conversions to forest land (5.69%) were less than to cocoa
(24.01%), oil palm (21.08%), and food crops (10.02%), but
significantly higher than conversions to built-up area
(1,76%), other tree crops (3.56%) and water (0.58%). With
a net change of 135.14 km2, forest was the land-cover
category with the largest extent converted to other land-
cover types. Swaps between forest and other land-cover
types amounted to 129.14 km2. The relatively small differ-
ence between net change (11.91%) (deforestation) and

swaps (11.38%) in forest indicates that deforestation in one
place is compensated by reforestation in another place at a
degree close to permanent tree-cover loss. These values are
also close to the amount of forest that persisted in the
landscape (11.20%), the largest value of all land-cover types
(Table 6).

Contrary to food-crop land, cocoa recorded a gain of
272.41 km2 (24.01%) (Table 6). However, cocoa also lost
considerable amounts (171.16 km2) to other land-cover
types, as did food-crop land (235.14 km2) and forest
(199.71 km2). High gains and losses make cocoa the most
dynamic land cover. Of the change, swaps contribute
30.17%, whereas net gains amount to 8.92% of the land-
scape. Swaps in cocoa are the largest of all land-cover
types, indicating shifts in location across the landscape.
Gains in cocoa are coming from food-crop land (9.16%),
forest (7.65%), and oil palm (6.16%), respectively, whereas

Table 4 Stock changes and
annual change rates of land-
cover types

Land-cover
type

1986 area
(km2)

2015 area
(km2)

Change (km2) Change (% of
landscape area)

Annual change
rate (%)

Built-up/bare 30.35 33.75 3.4 0.30 0.37

Food crops 305.75 184.25 − 121.5 − 10.71 − 1.75

Cocoa 280.01 381.26 101.25 8.92 1.06

Oil palm 169.19 295.99 126.8 11.18 1.93

Other tree
crops

22.04 40.99 18.95 1.67 2.14

Forest 326.74 191.6 − 135.14 − 11.91 − 1.84

Water 0.44 6.68 6.24 0.55 9.38

Table 5 Land transitions in km2

(top values) and in percentage of
the total landscape (bottom
values in bold)

Land-cover
types

Built-up/
bare

Food
crops

Cocoa Oil palm Other tree
crops

Forest Water 1986 Total

Built-up/bare 13.78 6.93 2.01 4.66 0.48 1.98 0.51 30.35

1.21 0.61 0.18 0.41 0.04 0.17 0.04 2.68

Food crops 12.43 70.61 103.92 81.68 12.73 23.29 1.09 305.75

1.10 6.22 9.16 7.20 1.12 2.05 0.10 26.95

Cocoa 4.16 52.03 108.85 79.63 11.30 23.65 0.39 280.01

0.37 4.59 9.59 7.02 1.00 2.08 0.03 24.68

Oil palm 1.15 21.45 69.91 56.78 7.23 12.28 0.39 169.19

0.10 1.89 6.16 5.00 0.64 1.08 0.03 14.91

Other tree
crops

0.25 2.69 9.81 5.38 0.55 3.33 0.03 22.04

0.02 0.24 0.86 0.47 0.05 0.29 0.00 1.94

Forest 1.98 30.42 86.76 67.83 8.60 127.03 4.12 326.74

0.17 2.68 7.65 5.98 0.76 11.20 0.36 28.80

Water 0.00 0.12 0.00 0.03 0.10 0.04 0.15 0.44

0.00 0.01 0.00 0.00 0.01 0.00 0.01 0.04

2015 Total 33.75 184.25 381.26 295.99 40.99 191.60 6.68 1134.52

2.97 16.24 33.61 26.09 3.61 16.89 0.59 100.00

The diagonal (underlined) indicates the persistence of land-cover types
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losses in cocoa are due to conversion to oil palm (7.02%),
food-crop land (4.59%), and forest (2.08%) (Table 5). This
indicates a slight loss of land for cocoa to land for oil palm,
with a net gain at the cost of forest and food-crop land. At
the same time, second to forest, cocoa (9.59%) has a rela-
tively high persistence in the landscape.

Similar to cocoa and conversely to forest and food-crop
land, oil palm expanded considerably. It saw a net change of
11.18% (126.8 km2) of the total landscape and is therefore
the land cover with the largest positive net change. This is a
result of oil palm gaining more (21.08%; second largest)
than losing (9.91%) during the transition period under
study. Of the total change in oil palm, swapping accounts
for more than half, equaling 19.82% of the landscape.
Similar to cocoa, the largest contributions to oil palm came
from food-crop land (7.20%), closely followed by cocoa
(7.02) and forest (5.98) (Table 5). Contributions from built-
up area (0.41%) and other tree crops (0.47) were marginal,
whereas the water area experienced no conversion to
oil palm.

Intensity Analysis

Category level intensity analysis determined the categories
that experienced dormant or active changes when compared
with the overall intensity of landscape change. Loss and
gain intensities per category are graphically shown in Fig. 6.

Gains and losses for forest and built-up area were both
dormant, whereas land for other tree crops (e.g., citrus)
recorded intensively active gains and losses. Land with food
crops experienced intense active losses and minimally
dormant gains. Contrastingly, water, oil palm, and cocoa

intensively gained, whereas their losses were dormant.
Intensities of gains (active) and losses (dormant) are rela-
tively higher for oil palm than for cocoa.

The paired bar charts in Figs. 7, 8, 9 and 10 compare
observed transition intensities between land-cover types
with hypothetical uniform intensities marked as vertical
dash lines on either side of the charts. The left uniform
intensity line represents the hypothetical uniform value for
the intensity of transitions resulting in losses in the
respective land categories; the right one is the uniform value
for the intensity of transitions leading to gains in land
categories.

Losses in food-crop land target all other land-cover
types, except forest and water (Fig. 7), with transitions to
built-up/bare areas being more intensive than those to tree
crops (cocoa, oil palm, and other). Expansion of food-crop
land avoids oil palm, other tree crops, and forest in
decreasing order of intensities. Rather, it targets water,
built-up/bare area, and cocoa to gain.

Forest loss targets oil palm and cocoa at similar inten-
sities and avoids food-crop land, built-up/bare area and
other tree crops (Fig. 8). Intensity was highest for the
transition from forest to water. Forest gains target other tree
crops and to a lesser extent water and cocoa at comparable
intensities. Oil palm, food-crop land and built-up/bare area
are marginally avoided.

Losses in oil palm area target cocoa and other tree crops
at similar transition intensities, and avoid food-crop land,
forest, water, and built-up/bare area in declining order (Fig.
9). Expansion of oil palm in the landscape targets cocoa
and, at a lesser intensity, food-crop land, and avoids other
tree crops slightly. Oil palm expansion avoids forest,

Table 6 Persistence, gain, loss,
net change, and swaps (top
values: area in km2; bottom
values (in bold): % of the total
landscape)

Land-cover
type

Persistence (km2) Gain (km2) Loss (km2) Gain+
Loss

Net change
(absolute)

Swaps

Built-up/bare 13.78 19.97 16.57 36.54 3.4 33.14

1.21 1.76 1.46 3.22 0.30 2.92

Food crops 70.61 113.64 235.14 348.78 (−)121.5 227.28

6.22 10.02 20.73 30.74 (−)10.71 20.03

Cocoa 108.85 272.41 171.16 443.57 101.25 342.32

9.59 24.01 15.09 39.10 8.92 30.17

Oil palm 56.78 239.21 112.41 351.62 126.8 224.82

5.00 21.08 9.91 30.99 11.18 19.82

Other tree
crops

0.55 40.44 21.49 61.93 18.95 42.98

0.05 3.56 1.89 5.46 1.67 3.79

Forest 127.03 64.57 199.71 264.28 (−)135.14 129.14

11.20 5.69 17.60 23.29 (−)11.91 11.38

Water 0.15 6.53 0.29 6.82 6.24 0.58

0.01 0.58 0.03 0.60 0.55 0.05
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built-up/bare area, and water, with transformation intensities
in declining order.

Cocoa targets food-crop land, oil palm, and other tree
crops for both losses and gains, but transition intensities
gained from oil palm and other tree crops were higher than
their respective losses. Forest, built-up/bare area, and water
were avoided (Fig. 10). Water recoded zero transition for
the expansion of cocoa.

Landscape Dwellers’ Impressions

Cocoa farms are established through gradual reduction of
tree shade by converting forests. In the case of food-crop
land conversion, cocoa is nurtured under shade crops such
as plantain. Upon maturity, food crops are excluded from
the plots, except a native yam species, locally referred to as
“kokooase bayere” (Dioscorea spp.). In wetter areas, oil

Fig. 6 Category level intensities
for 1986–2015

Fig. 7 Transition level
intensities for crop land (losses
on the left and gains on the
right)
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palm is also established through conversion of riverine
forest or rice fields. Although cocoa can exist on the same
land for 25–50 years, oil palm farms usually are to last for
about 25 years. Oil palm and cocoa lock up lands during
these years and reduce lands available for food-crop pro-
duction. Farmers cultivating these tree crops hardly switch
to other crops. However, in situations where cocoa is failing
in wetlands, it is replaced with rice or vegetables and

eventually oil palm. The dominance of cocoa in the western
part of the study area and of oil palm in the eastern part is
determined by site suitability factors such as elevation, soil
fertility, and water content, with lower elevations and wetter
conditions being more favorable for oil palm.

Economic triggers will also determine the future com-
position of the landscape. For example, the relative prices of
cocoa (set by the government), oil palm (to be negotiated

Fig. 8 Transition level
intensities for forest (losses on
the left and gains on the right)

Fig. 9 Transition level
intensities for oil palm (losses on
the left and gains on the right)
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with private companies), and food crops (generally low)
influence farmers’ decisions about crop choices. Informants
expect that cocoa and oil palm will continue to dominate the
landscape and, together (but to a lesser extent) with built-up
areas, will expand at the expense of other land-cover cate-
gories. Interviewees associate the loss of food-crop land
with the expansion of the two major tree crops and the
influx of migrant workers, and expansion of settlement
areas in the vicinity of these lands. Farmers have resorted to
growing food crops at distant locations away from rapidly
growing settlement areas. They expect that the situation will
lead to increased food shortages and food prices that are
already experienced in the area, in particular during the lean
season. Farmers are practicing backyard cropping and
intercropping in the initial stages of tree-crop farming to
supplement food purchased from distant markets. Con-
sidering these trends, they expect that the future forest in the
landscape will be restricted to forest reserves and sacred
areas.

Discussion

Land-cover Mapping and Accuracy

The study successfully applied conventional unsupervised
(ISODATA) and supervised (MLC) algorithms to map
food-crop land, forest, cocoa, oil palm, and other land-cover
types in the mosaic landscape derived from 1986 and 2015
Landsat images, respectively. Contrary to earlier studies

(Alo and Pontius 2008; Asare et al. 2014; Kusimi 2015;
Hackman et al. 2017), this study separated cocoa from
forest and other vegetation types in the landscape. It further
enabled a finer scale of land-cover mapping in the landscape
and analysis of the land transfers among them using con-
ventional classifiers, which was a gap in existing studies.

The estimated overall accuracies (area proportions) of
1986 and 2015 land-cover maps produced from ISODATA
and MLC classifiers respectively were relatively lower than
those derived from the pixel count error matrix, but com-
parable with other studies that used coarse categories in
similar landscapes (e.g., Kusimi 2015). The 6% reduction in
accuracy in both images could be due to the avoided geo-
location mismatch between land-cover map and reference
data (usually from the field) and interpreter bias associated
with the pixel count approach (Olofsson et al. 2014). The
uncertainty estimates account for the sampling incon-
sistencies inherent in reference data collection. The overall
accuracy of MLC for the 2015 image was lower than the
85% recommended by some scholars (e.g., Thomlinson
et al. 1999; Ge et al. 2007; Foody 2008). The presence of
high-density forest canopy over water surfaces contributed
to high omission errors recorded for water in the 1986 map.
Similarly, misclassifications of abandoned other tree-crop
land, particularly citrus fields, which are overgrown and
approaching secondary forest status, is probably the reason
for high commission and omission errors. The combination
of ISODATA and MLC classifiers reduced misclassifica-
tion, which is a common flaw in mapping complex and
heterogeneous landscapes from medium spatial resolution

Fig. 10 Transition level
intensities for cocoa (losses on
the left and gains on the right)
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images such as Landsat. The aim of using two different
classifiers was to harness the advantages of both classifiers.
MLC is comparatively better than ISODATA and can even
separate statistically inseparable land-cover types (Ahmad
and Quegan 2013). The low accuracy value recorded is
attributed to poor atmospheric conditions in the 2015 image
and the fact that the reference and training data were col-
lected a year after image capturing. In the face of a lack of
independent training data for the historical image (1986),
statistical clustering by ISODATA was an important initial
step. The results obtained from the study show that ISO-
DATA and MLC are suitable for landscape characterization.
Recent literature (Coulter et al. 2016) suggests that the
classification accuracies may be further enhanced by using
vegetation indices, which could reduce the effect of atmo-
sphere (clouds and haze).

Changes in Landscape Composition

The main land-cover types making up the landscape—for-
est, food-crop land, cocoa and oil palm—remained the same
between 1986 and 2015. However, the area has a high
change to persistence ratio, meaning that the landscape is
highly dynamic. Forests and food-crop land are declining,
whereas the major tree crops (cocoa and oil palm) con-
siderably increased in size. A minor increase in water
bodies was also observed. The expansion of oil palm can be
attributed to deliberate government policies to stimulate oil
palm production, notably the President’s Special Initiative
on oil palm of 2003 (Gilbert 2013) and the later tree-crop
policy (MoFA 2012). The expansion of cocoa is explained
by the suitability of a large part of the area for cocoa cul-
tivation (Michel-Dounias et al. 2015) and the attractiveness
of growing cocoa for farmers because of the status asso-
ciated with having a cocoa farm, its guaranteed market at
fixed prices, being a transferable property, and cocoa being
a beneficiary of many government programs (subsidized
seedling and fertilizer provision, mass spraying program,
and agricultural extension services) (Laven 2010; Deans
et al. 2017). The increasing visibility of water bodies is due
to (i) deforestation along rivers as a result of which the
water bodies are no longer hidden under vegetation cover,
(ii) the presence of fish ponds, and (iii) the recent expansion
of artisanal and small-scale gold and diamond mining (often
illegal), which creates holes in which water is collected.
Off-reserve forests have declined, but the persistence of
contiguous forest in the center-north of the region is the
result of its protected status as a forest reserve under the
auspices of the Ghana Forestry Commission.

Change detection revealed a change in the geographical
distribution of land-cover types resulting in increasing
segregation of land uses and homogenization of the land-
scape. The mosaic landscape of 1986 transformed into one

in which cocoa is being concentrated in the western part of
the study area, oil palm in the eastern part, and a persistent
component of contiguous forest remains in the central-
northern part. Oil palm has taken over from cocoa in the
eastern part of the study area. Explanations for these shifts
include the relatively low-lying eastern side, which favors
the growth of oil palm, but not cocoa, which prefers the
drier areas in the west (Michel-Dounias et al. 2015). The
proximity of the Ghana Oil Palm Development Company
(GOPDC)—Ghana’s largest oil palm company—also has a
role, both directly (it owns 5205 ha of oil palm plantations
and 349 ha of smallholdings on the concession) and
indirectly (about 13,000 ha of smallholders are in an out-
grower arrangement with GOPDC) (http://www.gopdc-ltd.
com/plantation/). Moreover, the proliferation of small- to
medium-scale processing facilities provide a ready market
for smallholders. Another pull factor for oil palm in the
eastern part of the study area is the presence of the Oil
Palm Research Institute, which facilitates the acquisition
of improved seedlings and technology transfer, whereas
the institute itself also has about 760 ha of oil palm
plantations.

In addition to cocoa and oil palm dominance in the
western and eastern areas, respectively, swaps have also
been observed, meaning that some land-cover types have
moved to another area, but retained their total size. They
were high for cocoa, food-crop land, and oil palm (in
declining order), making these three land-cover types key
determinants of landscape dynamics. It has been suggested
that this is part of the boom-and-bust cycle associated with
cocoa in mosaic landscapes, with a “bust” occurring when
yields decline, aged plantations are no longer regenerated
and no remaining forest is available for further expansion
(Clough et al. 2009). In Ghana, where remaining forests are
confined to forest reserves where farming is not allowed, a
new “boom” in a new “cocoa frontier” (Clough et al. 2009)
is highly unlikely, unless existing farming land is massively
converted to cocoa plantations. Only off-reserve forest
patches can be—and are—cleared for cocoa establishment,
with food crops as precursors or interplanted to provide
food until canopy closure. After canopy closure, cocoa
dominates, after which the old cocoa trees are felled and
abandoned cocoa farms can be taken over by forest or are
converted to oil palm (personal observation). Similarly,
swamp forest is converted to oil palm, but rice is planted
first. When oil palms become unproductive, they are either
felled and the land converted to rice again, or left fallow and
taken over by secondary forest. This results in cyclical
movements of land cover alternating between forest, tree
crops and food-crop land across the landscape. However,
the rate of reverting land to forest is less than the conversion
of forests as observed in western Ghana (Benefoh, personal
communication).
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Intensity Analysis

Category intensity analysis showed, first, that forest is a
dormant loser and gainer. Being a dormant loser is
explained by the fact that a major part of the forest in the
studied landscape is reserved under legal protection. The
forest is a dormant gainer as a result of abandoned tree-crop
plots being taken over by secondary forest, which barely
occurs. Second, food-crop land is being converted to oil
palm, cocoa, and settlements, at an intensity higher than
overall category intensity. This transfer is systematic,
meaning that gains in oil palm, cocoa and settlements target
losses from food-crop land and implies increasing scarcity
of land for food production. Third, cocoa and oil palm are
active gainers and dormant losers at the landscape level,
meaning that their expansion is above the average gains of
all land-cover types in the landscape and, similarly, that
their respective losses are below the average losses. Similar
trends have been observed for cocoa in western Ghana
(Benefoh, personal communication). This makes the two
tree crops the dominant landscape components in the
Akyemansa–Kwaebibrem landscape. Landscape dwellers
associate tree-crop expansion and homogenization of the
landscape with constrained ecosystem services and limited
biodiversity, which is comparable with observations in
Sulawesi (Belsky and Siebert 2003).

Transition intensity analysis revealed mainly that tree crops
—cocoa and oil palm—replaced forests and food-crop land
(Furumo and Aide 2017). With the majority of the remaining
forest under protection and off-reserve forest reduced to small
patches in usually inaccessible locations, food-crop areas are
the most targeted for cocoa and oil palm expansion. These
transitions may have serious implications for food security
and forest and biodiversity conservation, as has been amply
documented in the literature (Pfund et al. 2011; van Vliet et al.
2012; Castella et al. 2013). Transitions in cocoa and oil palm
also targeted each other, meaning that cocoa was converted to
oil palm and vice versa. However, in the study area the gains
of oil palm from cocoa are larger than the gains of cocoa from
oil palm. This means that oil palm is becoming a relatively
stronger component in the landscape.

Conclusions

The study addressed the question of how tree-crop expan-
sion drives the spatial transitions in the mosaic landscape of

a mixed cocoa/oil palm area in the Eastern Region of
Ghana. It classified the mosaic landscape into land-cover
types at two time points—1986 and 2015—to detect
changes in landscape composition and processes behind the
transformations. It revealed a dynamic landscape where
tree-crop expansion is the main driver of landscape change,
at the cost of off-reserve forests patches and food-crop land.
Cocoa and forest reserves turned out to be stable compo-
nents in the landscape, whereas oil palm is gradually
expanding in absolute and relative terms. The analysis
further showed that a previously mosaic landscape is in the
process of increasing segregation and homogenization into
mainly cocoa and oil palm. Commercial tree-crop cultiva-
tion has not only taken up 63% of the landscape, but also
exhibits an expanding and aggregating trend. The findings
imply risks of loss of biodiversity and other environmental
services as well as decreasing food production potential.
Landscape-level policies should target conservation of
environmental services and agricultural production as twin
objectives in landscape governance, for instance through
effective land-use planning. Further research is required to
quantitatively assess the configuration of the changing
landscape as well as the effects of these changes on the
provision of ecosystem services and peoples’ food security
and livelihoods.
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