Skip to main content
Log in

Early experience with dual mobility acetabular systems featuring highly cross-linked polyethylene liners for primary hip arthroplasty in patients under fifty five years of age: an international multi-centre preliminary study

  • Original Paper
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

Purpose

To evaluate early performance of contemporary dual mobility acetabular systems with second generation annealed highly cross-linked polyethylene for primary hip arthroplasty of patients under 55 years of age.

Methods

A prospective observational five years study across five centers in Europe and the USA of 321 patients with a mean age of 48.1 years was performed. Patients were assessed for causes of revision, hip instability, intra-prosthetic dissociation, Harris hip score and radiological signs of osteolysis.

Results

There were no dislocations and no intra-prosthetic dissociations. Kaplan Meier analysis demonstrated 97.51% survivorship for all cause revision and 99.68% survivorship for acetabular component revision at five years. Mean Harris hip score was 93.6. Two acetabular shells were revised for neck-rim implant impingement without dislocation and ten femoral stems were revised for causes unrelated to dual mobility implants.

Conclusion

Contemporary highly cross-linked polyethylene dual mobility systems demonstrate excellent early clinical, radiological, and survivorship results in a cohort of patients that demand high performance from their implants. It is envisaged that DM and second generation annealed HXLPE may reduce THA instability and wear, the two most common causes of THA revision in hip arthroplasty.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bozic KJ, Kurtz SM, Lau E et al (2009) The epidemiology of revision total hip arthroplasty in the United States. J Bone Joint Surg Am 91:128–33. doi:10.2106/JBJS.H.00155

    Article  PubMed  Google Scholar 

  2. National Joint Registry (2015) 12th Annual Report. http://www.njrcentre.org.uk/njrcentre

  3. The Swedish Hip Arthroplasty Register (2014) Annual Report 2014. Annu Rep. doi:10.1016/j.parkreldis.2015.02.017

    Google Scholar 

  4. Australian Orthopaedic Association (2011) Annual report hip and knee replacement http://www.dmac.adelaide.edu.au/aoanjrr

  5. Epinette J-A, Béracassat R, Tracol P et al (2014) Are modern dual mobility cups a valuable option in reducing instability after primary hip arthroplasty, even in younger patients? J Arthroplasty 29:1323–8. doi:10.1016/j.arth.2013.12.011

    Article  PubMed  Google Scholar 

  6. Ravi B, Croxford R, Reichmann WM et al (2012) The changing demographics of total joint arthroplasty recipients in the United States and Ontario from 2001 to 2007. Best Pract Res Clin Rheumatol 26:637–47. doi:10.1016/j.berh.2012.07.014

    Article  PubMed  Google Scholar 

  7. Lautridou C, Lebel B, Burdin G, Vielpeau C (2008) Survival of the cementless Bousquet dual mobility cup: Minimum 15-year follow-up of 437 total hip arthroplasties. Orthop Traumatol Surg Res 94:731–9. doi:10.1016/j.rco.2008.06.001

    CAS  Google Scholar 

  8. Heffernan C, Banerjee S, Nevelos J, Macintyre J, Issa K, Markel DC, Mont MA (2014) Does dual-mobility cup geometry affect posterior horizontal dislocation distance? Clin Orthop Relat Res 472(5):1535–44

  9. Stroh A, Naziri Q, Johnson AJ, Mont MA (2012) Dual-mobility bearings: a review of the literature. Expert Rev Med Devices 9:23–31. doi:10.1586/erd.11.57

    Article  PubMed  Google Scholar 

  10. Caton JH, Prudhon JL, Ferreira A, Aslanian T, Verdier R (2014) A comparative and rétrospective study of three hundred and twenty primary Charnley type hip replacements with a minimum follow up of ten years to assess wether a dual mobilité cup has a decrease dislocation risk. Int Orthop 38:1125–9

    Article  PubMed  PubMed Central  Google Scholar 

  11. Prudhon JL, Steffann F, Ferreira A, Verdier R, Aslanian T, Caton J (2014) Cementless dual-mobilité cup in total hip arthroplasty revision. Int Orthop 38:2463–8

    Article  PubMed  Google Scholar 

  12. Boyer B, Philippot R, Geringer J, Farizon F, Primary (2012) total hip arthroplasty with dual mobility socket to prevent dislocation: a 22-year follow-up of 240 hips. Int Orthop 36(3):511–8

    Article  PubMed  Google Scholar 

  13. Philippot R, Farizon F, Camilleri J-P (2008) Survival of cementless dual mobility socket with a mean 17 years follow-up. Orthop Traumatol Surg Res 94:e23–7. doi:10.1016/j.rco.2007.10.013

    CAS  Google Scholar 

  14. Lecuire F, Benareau I, Rubini J, Basso M (2004) Intra-prosthetic dislocation of the Bousquet dual mobility socket. Orthop Traumatol Surg Res 90:249–55

    CAS  Google Scholar 

  15. McArthur BA, Nam D, Cross MB (2013) Dual-mobility acetabular components in total hip arthroplasty. Am J Orthop (Belle Mead NJ) 42:473–8

    Google Scholar 

  16. Plummer DR, Haughom BD, Della Valle CJ (2014) Dual mobility in total hip arthroplasty. Orthop Clin North Am 45:1–8. doi:10.1016/j.ocl.2013.08.004

    Article  PubMed  Google Scholar 

  17. Vigdorchik JM, D’Apuzzo MR, Markel DC (2015) Lack of early dislocation following total hip arthroplasty with a new dual mobility acetabular design. Hip Int 25:34–8. doi:10.5301/hipint.5000186

    Article  PubMed  Google Scholar 

  18. Von Elm E, Altman DG, Egger M et al (2007) The strengthening the reporting of observational studies in epidemiology (STROBE) statement: guidelines for reporting observational studies. PLoS Med 4:e296. doi:10.1371/journal.pmed.0040296

    Article  Google Scholar 

  19. Engh CA, Sychterz CJ, Young AM (2002) Interobserver and intraobserver variability in radiographic assessment of osteolysis. J Arthroplasty 17:752–9

    Article  PubMed  Google Scholar 

  20. Epinette JA (2012) Outcome studies in hip and knee arthroplasty: a 14-year experience with the OrthoWave Software Suite. J Bone Joint Surg (Br) 94-B:63

    Google Scholar 

  21. Malek IA, Royce G, Bhatti SU et al (2016) A comparison between the direct anterior and posterior approaches for total hip arthroplasty: the role of an “Enhanced Recovery” pathway. Bone Joint J 98–B:754–60. doi:10.1302/0301-620X.98B6.36608

    Article  PubMed  Google Scholar 

  22. Hailer NP, Weiss RJ, Stark A, Kärrholm J (2012) The risk of revision due to dislocation after total hip arthroplasty depends on surgical approach, femoral head size, sex, and primary diagnosis. An analysis of 78,098 operations in the Swedish Hip Arthroplasty Register. Acta Orthop 83:442–8. doi:10.3109/17453674.2012.733919

    Article  PubMed  PubMed Central  Google Scholar 

  23. Corbett KL, Losina E, Nti AA (2010) Population-based rates of revision of primary total hip arthroplasty: a systematic review. PLoS One 5:e13520. doi:10.1371/journal.pone.0013520

    Article  PubMed  PubMed Central  Google Scholar 

  24. Geerdink CH, Grimm B, Ramakrishnan R et al (2006) Crosslinked polyethylene compared to conventional polyethylene in total hip replacement: pre-clinical evaluation, in-vitro testing and prospective clinical follow-up study. Acta Orthop 77:719–25. doi:10.1080/17453670610012890

    Article  PubMed  Google Scholar 

  25. Epinette J-A, Manley MT (2014) No differences found in bearing related hip survivorship at 10-12 years follow-up between patients with ceramic on highly cross-linked polyethylene bearings compared to patients with ceramic on ceramic bearings. J Arthroplasty 29:1369–72. doi:10.1016/j.arth.2014.02.025

    Article  PubMed  Google Scholar 

  26. Epinette J-A, Jolles-Haeberli BM (2016) Comparative results from a national joint registry hip data set of a new cross-linked annealed polyethylene vs both conventional polyethylene and ceramic bearings. J Arthroplasty 31:1483–91. doi:10.1016/j.arth.2015.12.041

    Article  PubMed  Google Scholar 

  27. Callary SA, Field JR, Campbell DG (2013) Low wear of a second-generation highly crosslinked polyethylene liner: a 5-year radiostereometric analysis study. Clin Orthop Relat Res 471(11):3596–600

    Article  PubMed  PubMed Central  Google Scholar 

  28. Gomez-Barrena E (2015) Retrieval analysis of sequentially annealed highly crosslinked polyethylene used in total hip arthroplasty. Clin Orthop Relat Res 473(3):972–3

    Article  PubMed  PubMed Central  Google Scholar 

  29. Reinitz SD, Currier BH, Van Citters DW, Levine RA, Collier JP (2015) Oxidation and other property changes of retrieved sequentially annealed UHMWPE acetabular and tibial bearings. J Biomed Mater Res B Appl Biomater 103(3):578–86

    Article  PubMed  Google Scholar 

  30. Kurtz S-M, Medel F, MacDonald D, Parvizi J, Kraay M, Rimnac C (2010) Reasons of revision for first-generation highly crosslinked polyethylenes. J Arthroplasty 25(6 Suppl):67–74

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kurtz SM, Hozack W, Turner J, Purtill J, MacDonald D, Sharkey P, Parvizi J, Manley M, Rothman R (2005) Mechanical properties of retrieved highly cross-linked crossfire liners after short-term implantation. J Arthroplasty 20(7):840–9

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kurtz S-M, Austin M, Azzam K, Sharkey P, MacDonald D, Medel F-J, Hozack W (2010) Mechanical properties, oxidation, and clinical performance of retrieved highly crosslinked crossfire liners after intermediate-term implantation. J Arthroplasty 25(4):614–623.e1-2

  33. MacDonald D, Sakona A, Ianuzzi A, Rimnac C-M, Kurtz S-M (2011) Do first-generation highly crosslinked polyethylenes oxidize in vivo? Clin Orthop Relat Res 469:2278–2285

    Article  PubMed  Google Scholar 

  34. Loving L, Lee RK, Herrera L (2013) Wear performance evaluation of a contemporary dual mobility hip bearing using multiple hip simulator testing conditions. J Arthroplasty 28:1041–6. doi:10.1016/j.arth.2012.09.011

    Article  PubMed  Google Scholar 

  35. Prudhon JL, Ferreira A, Verdier R (2013) Dual mobility cup: dislocation rate and survivorship at ten years of follow-up. Int Orthop 37(12):2345–50

    Article  PubMed  PubMed Central  Google Scholar 

  36. Leclercq S, Benoit J-Y, De Rosa J-P, Tallier EC, Leteurtre C, Girardin P-H (2013) Evora® chromium-cobalt dual mobility socket: results at a minimum 10 years’ follow-up. Orthop Traumatol Surg Res 99:758–764. doi:10.1016/j.rcot.2013.08.007

    Google Scholar 

  37. Epinette J-A, Lafuma A, Robert J, Doz M (2016) Cost-effectiveness model comparing dual-mobility to fixed-bearing designs for total hip replacement in France. Orthop Traumatol Surg Res 102:143–8

Download references

Acknowledgements

The authors thank Dr. Charles N. Cornell, Dr. Amar S. Ranawat, Dr. Thomas P. Sculco, Dr. Robert L. Buly for contributing data to this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Alain Epinette.

Ethics declarations

Conflict of interest

Dr. Jean-Alain Epinette, Dr. Steven Harwin, Dr. Philippe Tracol and Dr. Geoffrey H. Westrich are consultants for Stryker Orthopaedics.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Epinette, JA., Harwin, S.F., Rowan, F.E. et al. Early experience with dual mobility acetabular systems featuring highly cross-linked polyethylene liners for primary hip arthroplasty in patients under fifty five years of age: an international multi-centre preliminary study. International Orthopaedics (SICOT) 41, 543–550 (2017). https://doi.org/10.1007/s00264-016-3367-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-016-3367-0

Keywords

Navigation