Skip to main content

Advertisement

Log in

Can benign lymphoid tissue changes in 18F-FDG PET/CT predict response to immunotherapy in metastatic melanoma?

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Background

An association between immune-related adverse events (irAEs) caused by immunotherapeutic agents and the clinical benefit of immunotherapy has been suggested. We retrospectively evaluated by means of 18F-FDG PET/CT lymphoid tissue changes in the mediastinal/hilar lymph nodes and the spleen in response to ipilimumab administration in metastatic melanoma.

Methods

A total of 41 patients with unresectable metastatic melanoma underwent 18F-FDG PET/CT before the start of ipilimumab (baseline PET/CT), after two cycles (interim PET/CT) and at the end of treatment (late PET/CT). Data analysis was focused on the mediastinal/hilar lymph nodes and the spleen. The patients’ best clinical response (BCR) was used as reference.

Results

According to the BCR reference, 31 patients showed disease control (DC) and 10 patients showed progressive disease (PD). Mediastinal/hilar lymph node evaluation revealed that in total 4 patients in the interim or late PET/CT (10%) demonstrated a ‘sarcoid-like lymphadenopathy’ as response to treatment (LN-positive). All LN-positive patients responded to ipilimumab with DC. On the other hand, no significant differences between the DC and PD groups regarding both semi-quantitative and quantitative 18F-FDG PET spleen-related parameters at baseline and as response to treatment were detected.

Conclusion

Based on our findings, 10% patients in the interim or late PET/CT showed ‘sarcoid-like lymphadenopathy’ as response to treatment. All these patients showed disease control, implying a relation between the appearance of sarcoid-like lymphadenopathy and the clinical benefit of anti-CTLA-4 therapy. On the other hand, quantitative 18F-FDG PET analysis of the spleen showed a poor performance in predicting clinical benefit to ipilimumab.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Abbreviations

18F-FDG:

2-Deoxy-2-(18F)fluoro-d-glucose

BCR:

Best clinical response

CR:

Complete response

CT:

Computed tomography

DC:

Disease control

dPET/CT:

Dynamic positron emission tomography/computed tomography

FD:

Fractal dimension

irAEs:

Immune-related adverse events

LN-negative:

Negative mediastinal/hilar lymph nodes

LN-positive:

Positive mediastinal/hilar lymph nodes

PD:

Progressive disease

PET:

Positron emission tomography

PET/CT:

Positron emission tomography/computed tomography

PR:

Partial response

SD:

Stable disease

SUV:

Standardized uptake value

VOI:

Volume of interest

References

  1. Downey SG, Klapper JA, Smith FO et al (2007) Prognostic factors related to clinical response in patients with metastatic melanoma treated by CTL-associated antigen-4 blockade. Clin Cancer Res 13(22 Pt 1):6681–6688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hodi FS, O’Day SJ, McDermott DF et al (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363:711–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Postow MA, Chesney J, Pavlick AC et al (2015) Nivolumab and ipilimumab versus ipilimumab in untreated melanoma. N Engl J Med 372:2006–2017

    Article  PubMed  PubMed Central  Google Scholar 

  4. Larkin J, Chiarion-Sileni V, Gonzalez R et al (2015) Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med 373:23–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Weber JS, Kähler KC, Hauschild A (2012) Management of immune-related adverse events and kinetics of response with ipilimumab. J Clin Oncol 30(21):2691–2697

    Article  CAS  PubMed  Google Scholar 

  6. Attia P, Phan GQ, Maker AV et al (2005) Autoimmunity correlates with tumor regression in patients with metastatic melanoma treated with anti-cytotoxic T-lymphocyte antigen-4. J Clin Oncol 23(25):6043–6053

    Article  CAS  PubMed  Google Scholar 

  7. Kaehler KC, Piel S, Livingstone E, Schilling B, Hauschild A, Schadendorf D (2010) Update on immunologic therapy with anti-CTLA-4 antibodies in melanoma: identification of clinical and biological response patterns, immune-related adverse events, and their management. Semin Oncol 37(5):485–498

    Article  CAS  PubMed  Google Scholar 

  8. Kubota R, Yamada S, Kubota K, Ishiwata K, Tamahashi N, Ido T (1992) Intratumoral distribution of fluorine-18-fluorodeoxyglucose in vivo: high accumulation in macrophages and granulation tissues studied by microautoradiography. J Nucl Med 33:1972–1980

    CAS  PubMed  Google Scholar 

  9. Gamelli RL, Liu H, He LK, Hofmann CA (1996) Augmentations of glucose uptake and glucose transporter-1 in macrophages following thermal injury and sepsis in mice. J Leukoc Biol 59:639–647

    Article  CAS  PubMed  Google Scholar 

  10. Mochizuki T, Tsukamoto E, Kuge Y et al (2001) FDG uptake and glucose transporter subtype expressions in experimental tumor and inflammation models. J Nucl Med 42:1551–1555

    CAS  PubMed  Google Scholar 

  11. Zhuang H, Alavi A (2002) 18-fluorodeoxyglucose positron emission tomographic imaging in the detection and monitoring of infection and inflammation. Semin Nucl Med 32:47–59

    Article  PubMed  Google Scholar 

  12. Paik JY, Lee KH, Choe YS et al (2004) Augmented 18F-FDG uptake in activated monocytes occurs during the priming process and involves tyrosine kinases and protein kinase C. J Nucl Med 45:124–128

    CAS  PubMed  Google Scholar 

  13. Jamar F, Buscombe J, Chiti A et al (2013) EANM/SNMMI guideline for 18F-FDG use in inflammation and infection. J Nucl Med 54(4):647–658

    Article  PubMed  Google Scholar 

  14. Wong ANM, McArthur GA, Hofman MS, Hicks RJ (2017) The advantages and challenges of using FDG PET/CT for response assessment in melanoma in the era of targeted agents and immunotherapy. Eur J Nucl Med Mol Imaging 44(Suppl 1):67–77

    Article  PubMed  Google Scholar 

  15. Balch CM, Gershenwald JE, Soong S-J et al (2009) Final version of 2009 AJCC melanoma staging and classification. J Clin Oncol 27(36):6199–6206

    Article  PubMed  PubMed Central  Google Scholar 

  16. Anwar H, Sachpekidis C, Winkler J et al (2018) Absolute number of new lesions in 18F-FDG PET/CT is more predictive of clinical outcome than SUV changes in metastatic melanoma patients receiving ipilimumab. Eur J Nucl Med Mol Imaging 45(3):376–383

    Article  CAS  PubMed  Google Scholar 

  17. Sachpekidis C, Anwar H, Winkler J et al (2018) The role of interim 18F-FDG PET/CT in prediction of response to ipilimumab treatment in metastatic melanoma. Eur J Nucl Med Mol Imaging 45(8):1289–1296

    Article  CAS  PubMed  Google Scholar 

  18. Sachpekidis C, Anwar H, Winkler JK et al (2018) Longitudinal studies of the 18F-FDG kinetics after ipilimumab treatment in metastatic melanoma patients based on dynamic FDG PET/CT. Cancer Immunol Immunother 67:1261–1270. https://doi.org/10.1007/s00262-018-2183-3. (Epub ahead of print)

    Article  PubMed  Google Scholar 

  19. Sokoloff L, Smith CB (1983) Basic principles underlying radioisotopic methods for assay of biochemical processes in vivo. In: Greitz T, Ingvar DH, Widén L (eds) The metabolism of the human brain studied with positron emission tomography. Raven Press, New York, pp 123–148

    Google Scholar 

  20. Ohtake T, Kosaka N, Watanabe T et al (1991) Noninvasive method to obtain input function for measuring tissue glucose utilization of thoracic and abdominal organs. J Nucl Med 32:1432–1438

    CAS  PubMed  Google Scholar 

  21. Miyazawa H, Osmont A, Petit-Taboué MC et al (1993) Determination of 18F-fluoro-2-deoxy-d-glucose rate constants in the anesthetized baboon brain with dynamic positron tomography. J Neurosci Methods 50:263–272

    Article  CAS  PubMed  Google Scholar 

  22. Burger C, Buck A (1997) Requirements and implementation of a flexible kinetic modeling tool. J Nucl Med 38:1818–1823

    CAS  PubMed  Google Scholar 

  23. Sachpekidis C, Thieke C, Askoxylakis V et al (2015) Combined use of (18)F-FDG and (18)F-FMISO in unresectable non-small cell lung cancer patients planned for radiotherapy: a dynamic PET/CT study. Am J Nucl Med Mol Imaging 5(2):127–142

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Dimitrakopoulou-Strauss A, Strauss LG, Mikolajczyk K, Burger C, Lehnert T, Bernd L, Ewerbeck V (2003) On the fractal nature of dynamic positron emission tomography (PET) studies. World J Nucl Med 2:306–313

    Google Scholar 

  25. Bronstein Y, Ng CS, Hwu P, Hwu WJ (2011) Radiologic manifestations of immune-related adverse events in patients with metastatic melanoma undergoing anti-CTLA-4 antibody therapy. Am J Roentgenol 197(6):W992–W1000

    Article  Google Scholar 

  26. Kwak JJ, Tirumani SH, Van den Abbeele AD, Koo PJ, Jacene HA (2015) Cancer immunotherapy: imaging assessment of novel treatment response patterns and immune-related adverse events. Radiographics 35(2):424–437

    Article  PubMed  Google Scholar 

  27. Howard SA, Krajewski KM, Jagannathan JP et al (2016) A new look at toxicity in the era of precision oncology: imaging findings, their relationship with tumor response, and effect on metastasectomy. Am J Roentgenol 207(1):4–14

    Article  Google Scholar 

  28. MacDonald IC, Ragan DM, Schmidt EE, Groom AC (1987) Kinetics of red blood cell passage through interendothelial slits into venous sinuses in rat spleen, analyzed by in vivo microscopy. Microvasc Res 33:118–134

    Article  CAS  PubMed  Google Scholar 

  29. Bratosin D, Mazurier J, Tissier JP et al (1998) Cellular and molecular mechanisms of senescent erythrocyte phagocytosis by macrophages. A review. Biochimie 80(2):173–195. (Review)

    Article  CAS  PubMed  Google Scholar 

  30. Yin Y, Choi SC, Xu Z et al (2015) Normalization of CD41 T cell metabolism reverses lupus. Sci Transl Med 7:274ra18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ahn SS, Hwang SH, Jung SM et al (2017) Evaluation of spleen glucose metabolism using 18F-FDG PET/CT in patients with febrile autoimmune disease. J Nucl Med 58(3):507–513

    Article  CAS  PubMed  Google Scholar 

  32. Sachpekidis C, Larribere L, Kopp-Schneider A, Haberkorn U, Hassel J, Dimitrakopoulou-Strauss A (2018) Benign lymphoid tissue changes as response to immunotherapy in metastatic melanoma patients: an 18F-FDG PET/CT study. Eur J Nucl Med Mol Imaging 45 (Suppl 1): S517 (Abstract EP-0551)

    Google Scholar 

  33. Ribas A, Benz MR, Allen-Auerbach MS et al (2010) Imaging of CTLA4 blockade-induced cell replication with (18)F-FLT PET in patients with advanced melanoma treated with tremelimumab. J Nucl Med 51:340–346

    Article  CAS  PubMed  Google Scholar 

  34. Tsai KK, Pampaloni MH, Hope C et al (2016) Increased FDG avidity in lymphoid tissue associated with response to combined immune checkpoint blockade. J Immunother Cancer 4:58

    Article  PubMed  PubMed Central  Google Scholar 

  35. Pektor S, Hilscher L, Walzer KC et al (2018) In vivo imaging of the immune response upon systemic RNA cancer vaccination by FDG-PET. EJNMMI Res 8(1):80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Eshghi N, Garland LL, Nia E, Betancourt R, Krupinski E, Kuo PH (2018) 18F-FDG PET/CT can predict development of thyroiditis due to immunotherapy for lung cancer. J Nucl Med Technol 46:260–264

    Article  PubMed  Google Scholar 

  37. Phelps ME, Huang SC, Hoffman EJ et al (1979) Tomographic measurement of local cerebral glucose metabolic rate in humans with (F-18)2-fluoro-2-deoxy-d-glucose: validation of method. Ann Neurol 6:371–388

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported in part by the German Cancer Aid under the project with the title ‘Therapy monitoring of ipilimumab based on the quantification of F-18-FDG kinetics with 4D PET/CT (dPET-CT) in patients with melanoma (stage 4)’. The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript. No additional external funding was received for this study.

Author information

Authors and Affiliations

Authors

Contributions

CS performed the PET/CT studies, carried out the PET/CT data analysis, drafted and performed final editing of the manuscript. LL contributed to the conception of the study and co-drafted the manuscript. AK-S was responsible for the statistical analysis of the study. JCH was responsible for the selection of the patients who received the ipilimumab therapy and co-drafted the manuscript. AD-S was responsible for the PET-CT study design and the data evaluation and coordinated the project.

Corresponding author

Correspondence to Christos Sachpekidis.

Ethics declarations

Conflict of interest

Jessica C. Hassel received honoraria for talks and travel expenses from Bristol-Myers Squibb (BMS), Merck, Sharp & Dohm (MSD), Roche, Novartis, Pfizer and is a member of an advisory board for MSD and Amgen. The other authors declare that they have no conflict of interest.

Ethical approval

The presented results are part of the study entitled “Quantification of 18F-FDG kinetics with 4D PET-CT in patients with melanoma stage IV”, which was approved by the Ethical Committee of the University of Heidelberg (Ethikvotum: S-107 /2012—Ethical Committee 1 of the University of Heidelberg) and the Federal Office for Radiation Protection (Bundesamt für Strahlenschutz; BfS: Z5- 22463 / 2 2012a-016). This study does not contain any studies with animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study. The patient presented in Fig. 1 agreed to the publication of this figure.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sachpekidis, C., Larribère, L., Kopp-Schneider, A. et al. Can benign lymphoid tissue changes in 18F-FDG PET/CT predict response to immunotherapy in metastatic melanoma?. Cancer Immunol Immunother 68, 297–303 (2019). https://doi.org/10.1007/s00262-018-2279-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-018-2279-9

Keywords

Navigation