Skip to main content

Advertisement

Log in

CD163+CD14+ macrophages, a potential immune biomarker for malignant pleural effusion

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

A Correction to this article was published on 04 August 2021

This article has been updated

Abstract

Background

Malignant pleural effusion (MPE) is a common complication caused by malignant diseases. However, subjectivity, poor sensitivity, and substantial false-negative rates of cytology assay hamper accurate MPE diagnosis. The aim of this study was to assess whether CD163+CD14+ tumor-associated macrophages (TAMs) could be used as a biomarker for enabling sensitive and specific MPE diagnosis.

Methods

Pleural effusion samples and peripheral blood samples were collected from 50 MPE patients and 50 non-malignant pleural effusion (NMPE) patients, respectively. Flow cytometry was performed to analyze cell phenotypes, and RT-qPCR was used to detect cytokine expression in these monocytes and macrophages. A blinded validation study (n = 40) was subsequently performed to confirm the significance of CD163+CD14+ TAMs in MPE diagnosis. Student’s t test, rank sum test, and receiver operating characteristic curve analysis were used for statistical analysis.

Results

Notably, CD163+CD14+ cell frequency in MPE was remarkably higher than that in NMPE (P < 0.001). In a blinded validation study, a sensitivity of 78.9 % and a specificity of 100 % were obtained with CD163+CD14+ TAMs as a MPE biomarker. In total (n = 140), by using a cutoff level of 3.65 %, CD163+CD14+ cells had a sensitivity of 81.2 % and a specificity of 100 % for MPE diagnosis. Notably, MPE diagnosis by estimating CD163+CD14+ cells in pleural effusion could be obtained one week earlier than that obtained by cytological examination.

Conclusions

CD163+CD14+ macrophages could be potentially used as an immune diagnostic marker for MPE and has better assay sensitivity than that of cytological analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Change history

Abbreviations

AUC:

Area under curve

CI:

Confidence interval

FACS:

Fluorescence-activating cell sorter

MACS:

Magnetic cell sorting

MDSC:

Myeloid-derived suppressor cells

MPE:

Malignant pleural effusion

NMPE:

Non-malignant pleural effusion

NS:

Normal saline

RCC:

Renal cell carcinoma

ROC:

Receiver operating characteristic curve

SPSS:

Statistical program for social sciences

TAMs:

Tumor-associated macrophages

References

  1. Heffner JE, Klein JS (2008) Recent advances in the diagnosis and management of malignant pleural effusions. Mayo Clin Proc 83:235–250. doi:10.4065/83.2.235

    Article  PubMed  Google Scholar 

  2. Stathopoulos GT (2011) Translational advances in pleural malignancies. Respirology 16:53–63. doi:10.1111/j.1440-1843.2010.01890.x

    Article  PubMed  Google Scholar 

  3. Mishra EK, Davies RJ (2010) Advances in the investigation and treatment of pleural effusions. Expert Rev Respir Med 4:123–133

    Article  PubMed  Google Scholar 

  4. Morgensztern D, Waqar S, Subramanian J, Trinkaus K, Govindan R (2012) Prognostic impact of malignant pleural effusion at presentation in patients with metastatic non-small-cell lung cancer. J Thorac Oncol 7:1485–1489. doi:10.1097/JTO.0b013e318267223a

    Article  PubMed  Google Scholar 

  5. Salah S, Tanvetyanon T, Abbasi S (2012) Metastatectomy for extra-cranial extra-adrenal non-small cell lung cancer solitary metastases: systematic review and analysis of reported cases. Lung Cancer 75:9–14. doi:10.1016/j.lungcan.2011.07.014

    Article  PubMed  Google Scholar 

  6. Rakha EA, Patil S, Abdulla K, Abdulkader M, Chaudry Z, Soomro IN (2010) The sensitivity of cytologic evaluation of pleural fluid in the diagnosis of malignant mesothelioma. Diagn Cytopathol 38:874–879. doi:10.1002/dc.21303

    Article  CAS  PubMed  Google Scholar 

  7. Rodriguez-Panadero F, Romero-Romero B (2013) Current and future options for the diagnosis of malignant pleural effusion. Expert Opin Med Diagn 7:275–287. doi:10.1517/17530059.2013.786038

    Article  CAS  PubMed  Google Scholar 

  8. Basak SK, Veena MS, Oh S, Huang G, Srivatsan E, Huang M, Sharma S, Batra RK (2009) The malignant pleural effusion as a model to investigate intratumoral heterogeneity in lung cancer. PLoS ONE 4:e5884. doi:10.1371/journal.pone.0005884

    Article  PubMed Central  PubMed  Google Scholar 

  9. Stathopoulos GT, Kalomenidis I (2012) Malignant pleural effusion: tumor-host interactions unleashed. Am J Respir Crit Care Med 186:487–492. doi:10.1164/rccm.201203-0465PP

    Article  PubMed  Google Scholar 

  10. Ruffell B, Affara NI, Coussens LM (2012) Differential macrophage programming in the tumor microenvironment. Trends Immunol 33:119–126. doi:10.1016/j.it.2011.12.001

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Coffelt SB, Hughes R, Lewis CE (2009) Tumor-associated macrophages: effectors of angiogenesis and tumor progression. Biochim Biophys Acta 1796:11–18. doi:10.1016/j.bbcan.2009.02.004

    CAS  PubMed  Google Scholar 

  12. Rogers TL, Holen I (2011) Tumour macrophages as potential targets of bisphosphonates. J Transl Med 9:177. doi:10.1186/1479-5876-9-177

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Edin S, Wikberg ML, Dahlin AM, Rutegard J, Oberg A, Oldenborg PA, Palmqvist R (2012) The distribution of macrophages with a M1 or M2 phenotype in relation to prognosis and the molecular characteristics of colorectal cancer. PLoS ONE 7:e47045. doi:10.1371/journal.pone.0047045

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Chen C, Zhu YB, Shen Y, Zhu YH, Zhang XG, Huang JA (2012) Increase of circulating B7-H4-expressing CD68+ macrophage correlated with clinical stage of lung carcinomas. J Immunother 35:354–358. doi:10.1097/CJI.0b013e31824212c4

    Article  PubMed  Google Scholar 

  15. Komohara Y, Niino D, Saito Y, Ohnishi K, Horlad H, Ohshima K, Takeya M (2013) Clinical significance of CD163(+) tumor-associated macrophages in patients with adult T-cell leukemia/lymphoma. Cancer Sci 104:945–951. doi:10.1111/cas.12167

    Article  CAS  PubMed  Google Scholar 

  16. Reinartz S, Schumann T, Finkernagel F, Wortmann A, Jansen JM, Meissner W, Krause M, Schworer AM, Wagner U, Muller-Brusselbach S, Muller R (2014) Mixed-polarization phenotype of ascites-associated macrophages in human ovarian carcinoma: correlation of CD163 expression, cytokine levels and early relapse. Int J Cancer 134:32–42. doi:10.1002/ijc.28335

    Article  PubMed Central  PubMed  Google Scholar 

  17. de Vos van Steenwijk PJ, Ramwadhdoebe TH, Goedemans R, Doorduijn EM, van Ham JJ, Gorter A, van Hall T, Kuijjer ML, van Poelgeest MI, van der Burg SH, Jordanova ES (2013) Tumor-infiltrating CD14-positive myeloid cells and CD8-positive T-cells prolong survival in patients with cervical carcinoma. Int J Cancer 133:2884–2894. doi:10.1002/ijc.28309

    Google Scholar 

  18. Barros MH, Hassan R, Niedobitek G (2012) Tumor-associated macrophages in pediatric classical Hodgkin lymphoma: association with Epstein–Barr virus, lymphocyte subsets, and prognostic impact. Clin Cancer Res 18:3762–3771. doi:10.1158/1078-0432.ccr-12-0129

    Article  CAS  PubMed  Google Scholar 

  19. Obermajer N, Wong JL, Edwards RP, Chen K, Scott M, Khader S, Kolls JK, Odunsi K, Billiar TR, Kalinski P (2013) Induction and stability of human Th17 cells require endogenous NOS2 and cGMP-dependent NO signaling. J Exp Med 210:1433–1445. doi:10.1084/jem.20121277

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Pass HI, Levin SM, Harbut MR, Melamed J, Chiriboga L, Donington J, Huflejt M, Carbone M, Chia D, Goodglick L, Goodman GE, Thornquist MD, Liu G, de Perrot M, Tsao MS, Goparaju C (2012) Fibulin-3 as a blood and effusion biomarker for pleural mesothelioma. N Engl J Med 367:1417–1427. doi:10.1056/NEJMoa1115050

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Komohara Y, Jinushi M, Takeya M (2014) Clinical significance of macrophage heterogeneity in human malignant tumors. Cancer Sci 105:1–8. doi:10.1111/cas.12314

    Article  CAS  PubMed  Google Scholar 

  22. Shirabe K, Mano Y, Muto J, Matono R, Motomura T, Toshima T, Takeishi K, Uchiyama H, Yoshizumi T, Taketomi A, Morita M, Tsujitani S, Sakaguchi Y, Maehara Y (2012) Role of tumor-associated macrophages in the progression of hepatocellular carcinoma. Surg Today 42:1–7. doi:10.1007/s00595-011-0058-8

    Article  CAS  PubMed  Google Scholar 

  23. Pettersen JS, Fuentes-Duculan J, Suarez-Farinas M, Pierson KC, Pitts-Kiefer A, Fan L, Belkin DA, Wang CQ, Bhuvanendran S, Johnson-Huang LM, Bluth MJ, Krueger JG, Lowes MA, Carucci JA (2011) Tumor-associated macrophages in the cutaneous SCC microenvironment are heterogeneously activated. J Invest Dermatol 131:1322–1330. doi:10.103/jid.2011.9

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Capece D, Fischietti M, Verzella D, Gaggiano A, Cicciarelli G, Tessitore A, Zazzeroni F, Alesse E (2013) The inflammatory microenvironment in hepatocellular carcinoma: a pivotal role for tumor-associated macrophages. Biomed Res Int 2013:187204. doi:10.1155/2013/187204

    Article  PubMed Central  PubMed  Google Scholar 

  25. Walter RB, Bachli EB, Schaer DJ, Ruegg R, Schoedon G (2003) Expression of the hemoglobin scavenger receptor (CD163/HbSR) as immunophenotypic marker of monocytic lineage in acute myeloid leukemia. Blood 101:3755–3756. doi:10.1182/blood-2002-11-3414

    Article  CAS  PubMed  Google Scholar 

  26. Garcia C, Gardner D, Reichard KK (2008) CD163: a specific immunohistochemical marker for acute myeloid leukemia with monocytic differentiation. Appl Immunohistochem Mol Morphol 16:417–421. doi:10.1097/PAI.0b013e31815db477

    Article  CAS  PubMed  Google Scholar 

  27. Lau SK, Chu PG, Weiss LM (2004) CD163: a specific marker of macrophages in paraffin-embedded tissue samples. Am J Clin Pathol 122:794–801. doi:10.1309/qhd6-yfn8-1kqx-uuh6

    Article  PubMed  Google Scholar 

  28. Chung FT, Lee KY, Wang CW, Heh CC, Chan YF, Chen HW, Kuo CH, Feng PH, Lin TY, Wang CH, Chou CL, Chen HC, Lin SM, Kuo HP (2012) Tumor-associated macrophages correlate with response to epidermal growth factor receptor-tyrosine kinase inhibitors in advanced non-small cell lung cancer. Int J Cancer 131:E227–E235. doi:10.1002/ijc.27403

    Article  CAS  PubMed  Google Scholar 

  29. Ma J, Liu L, Che G, Yu N, Dai F, You Z (2010) The M1 form of tumor-associated macrophages in non-small cell lung cancer is positively associated with survival time. BMC Cancer 10:112. doi:10.1186/1471-2407-10-112

    Article  PubMed Central  PubMed  Google Scholar 

  30. Behnes CL, Bremmer F, Hemmerlein B, Strauss A, Strobel P, Radzun HJ (2014) Tumor-associated macrophages are involved in tumor progression in papillary renal cell carcinoma. Virchows Arch 464:191–196. doi:10.1007/s00428-013-1523-0

    Article  CAS  PubMed  Google Scholar 

  31. Santoni M, Massari F, Amantini C, Nabissi M, Maines F, Burattini L, Berardi R, Santoni G, Montironi R, Tortora G, Cascinu S (2013) Emerging role of tumor-associated macrophages as therapeutic targets in patients with metastatic renal cell carcinoma. Cancer Immunol Immunother 62:1757–1768. doi:10.1007/s00262-013-1487-6

    Article  CAS  PubMed  Google Scholar 

  32. Helm O, Held-Feindt J, Grage-Griebenow E, Reiling N, Ungefroren H, Vogel I, Kruger U, Becker T, Ebsen M, Rocken C, Kabelitz D, Schafer H, Sebens S (2014) Tumor-associated macrophages exhibit pro- and anti-inflammatory properties by which they impact on pancreatic tumorigenesis. Int J Cancer 135:843–861. doi:10.1002/ijc.28736

    Article  CAS  PubMed  Google Scholar 

  33. Lim MH, Garrettc J, Mowlem L, Yap E (2013) Diagnosing malignant pleural effusions: how do we compare? N Z Med J 126:42–48

    PubMed  Google Scholar 

  34. Gorgun D, Secik F, Midilli K, Akkaya V, Yildiz P (2013) Diagnostic and prognostic significance of survivin levels in malignant pleural effusion. Respir Med 107:1260–1265. doi:10.1016/j.rmed.2013.04.011

    Article  PubMed  Google Scholar 

  35. Neumann V, Loseke S, Nowak D, Herth FJ, Tannapfel A (2013) Malignant pleural mesothelioma: incidence, etiology, diagnosis, treatment, and occupational health. Dtsch Arztebl Int 110:319–326. doi:10.3238/arztebl.2013.0319

    PubMed Central  PubMed  Google Scholar 

  36. Rieux C, Boisdron-Celle M, Morel A, Fey L, Urban T, Hureaux J (2013) Biological diagnosis of resistance to erlotinib in a malignant pleural effusion. Rev Mal Respir 30:572–575. doi:10.1016/j.rmr.2013.02.010

    Article  CAS  PubMed  Google Scholar 

  37. Johnston WW (1985) The malignant pleural effusion. A review of cytopathologic diagnoses of 584 specimens from 472 consecutive patients. Cancer 56:905–909

    Article  CAS  PubMed  Google Scholar 

  38. Sriram KB, Relan V, Clarke BE, Duhig EE, Windsor MN, Matar KS, Naidoo R, Passmore L, McCaul E, Courtney D, Yang IA, Bowman RV, Fong KM (2012) Pleural fluid cell-free DNA integrity index to identify cytologically negative malignant pleural effusions including mesotheliomas. BMC Cancer 12:428. doi:10.1186/1471-2407-12-428

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Kaczmarek M, Sikora J (2012) Macrophages in malignant pleural effusions - alternatively activated tumor associated macrophages. Contemp Oncol (Pozn) 16:279–284. doi:10.5114/wo.2012.30054

    Google Scholar 

  40. Mundt F, Heidari-Hamedani G, Nilsonne G, Metintas M, Hjerpe A, Dobra K (2014) Diagnostic and prognostic value of soluble syndecan-1 in pleural malignancies. Biomed Res Int 2014:419853. doi:10.1155/2014/419853

    Article  PubMed Central  PubMed  Google Scholar 

  41. Xu C, Yu L, Zhan P, Zhang Y (2014) Elevated pleural effusion IL-17 is a diagnostic marker and outcome predictor in lung cancer patients. Eur J Med Res 19:23. doi:10.1186/2047-783x-19-23

    Article  PubMed Central  PubMed  Google Scholar 

  42. Gong Y, Chen SX, Gao BA, Yao RC, Guan L (2014) Cell origins and significance of IL-17 in malignant pleural effusion. Clin Transl Oncol 16:807–813. doi:10.1007/s12094-013-1152-8

    Article  CAS  PubMed  Google Scholar 

  43. Gonda K, Shibata M, Shimura T, Abe N, Suzuki S, Yasuda M, Nakamura I, Ohtake T, Ohki S, Watanabe T, Fujimori K, Ohto H, Takenoshita S (2012) Changes in myeloid-derived suppressor cells in malignant effusions of cancer patients following cancer chemotherapy. Gan To Kagaku Ryoho 39:2088–2091

    PubMed  Google Scholar 

  44. Romano A, Parrinello NL, Vetro C, Forte S, Chiarenza A, Figuera A, Motta G, Palumbo GA, Ippolito M, Consoli U, Raimondo FD (2015) Circulating myeloid-derived suppressor cells correlate with clinical outcome in Hodgkin lymphoma patients treated up-front with a risk-adapted strategy. Br J Haematol 168:689–700. doi:10.1111/bjh.13198

    Article  CAS  PubMed  Google Scholar 

  45. Hagemann T, Lawrence T, McNeish I, Charles KA, Kulbe H, Thompson RG, Robinson SC, Balkwill FR (2008) “Re-educating” tumor-associated macrophages by targeting NF-kappaB. J Exp Med 205:1261–1268. doi:10.1084/jem.20080108

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the National Natural Science Foundation of China (Grant Nos. 81171986, 81271815, 812111102), Research grant from the Ministry of Public Health (Grant No. 20110110001), the Basic and Advanced Technology Research Foundation from Science and Technology Department of Henan Province (Grant Nos. 112300410153, 122300410155), Funds for Creative Research Team of Henan Province, Creative Research Team of Higher Education of Henan Province, and the Innovation Team of The First Affiliated Hospital of Zhengzhou University.

Conflict of interest

All authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Zhang.

Additional information

Fei Wang and Li Yang have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 744 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, F., Yang, L., Gao, Q. et al. CD163+CD14+ macrophages, a potential immune biomarker for malignant pleural effusion. Cancer Immunol Immunother 64, 965–976 (2015). https://doi.org/10.1007/s00262-015-1701-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-015-1701-9

Keywords

Navigation