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Abstract
Objectives  To investigate the performance of the mean parametric values and texture features based on intravoxel incoher-
ent motion diffusion-weighted imaging (IVIM-DWI) on identifying pathological complete response (pCR) to neoadjuvant 
chemoradiotherapy (nCRT) in locally advanced rectal cancer (LARC).
Methods  Pretreatment IVIM-DWI was performed on 41 LARC patients receiving nCRT in this prospective study. The values 
of IVIM-DWI parameters (apparent diffusion coefficient, ADC; pure diffusion coefficient, D; pseudo-diffusion coefficient, 
D* and perfusion fraction, f), the first-order, and gray-level co-occurrence matrix (GLCM) texture features were compared 
between the pCR (n = 9) and non-pathological responder (non-pCR, n = 32) groups. Receiver operating characteristic (ROC) 
curves in univariate and multivariate logistic regression analysis were generated to determine the efficiency for identifying 
pCR.
Results  The values of IVIM-DWI parameters and first-order texture features did not show significant differences between 
the pCR and non-pCR groups. The pCR group had lower Contrast and DifVarnc values extracted from the ADC, D, and D* 
maps, respectively, as well as lower CorrelatD value. Higher CorrelatD*, Correlatf, SumAvergADC, and SumAvergD values 
were observed in the pCR group. The area under the ROC curve (AUC) values for the individual predictors in univariate 
analysis ranged from 0.698 to 0.837, with sensitivities from 43.75% to 87.50% and specificities from 66.67 to 100.00%. In 
multivariate analysis, CorrelatD* (P < 0.001), DifVarncADC (P = 0.024), and DifVarncD (P < 0.001) were the independent 
predictors to pCR, with an AUC of 0.986, a sensitivity of 93.75%, and a specificity of 100.00%.
Conclusion  Pretreatment GLCM analysis based on IVIM-DWI may be a potential approach to identify the pathological 
response of LARC.
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Abbreviations
ADC	� Apparent diffusion coefficient
AngScMom	� Angular second moment
AUC​	� Area under the curve
D	� Pure diffusion coefficient
D*	� Pseudo-diffusion coefficient
DifEntrp	� Difference entropy
DifVarnc	� Difference variance
DWI	� Diffusion-weighted imaging
f	� Perfusion fraction
GLCM	� Gray-level co-occurrence matrix
InvDfMom	� Inverse difference moment
IVIM-DWI	� Intravoxel incoherent motion diffusion-

weighted imaging
LARC​	� Locally advanced rectal cancer
MRI	� Magnetic resonance imaging
nCRT​	� Neoadjuvant chemoradiotherapy
non-pCR	� Non-pathological complete response
pCR	� Pathological complete response
SumAverg	� Sum average
SumEntrp	� Sum entropy
SumOfSqs	� Sum of squares
SumVarnc	� Sum Variance
TRG​	� Tumor regression grade

Introduction

Neoadjuvant chemoradiotherapy (nCRT) combined with 
subsequent total mesorectal excision (TME) is the current 
standard of care for locally advanced rectal cancer (LARC) 
because of its great performance on decreasing the chance of 
local recurrence and increasing overall survival rate [1, 2]. 
Pathological examination is the gold standard to evaluate the 
therapy response to nCRT of LARC. Currently, the patho-
logic response to nCRT is variable across LARC individuals, 
of which 15–27% achieve a pathologic complete response 
(pCR) [3]. These patients may need no further anti-tumor 
treatment and benefit from this “wait-and-watch” strategy 
[4], while alternative therapy should be considered for those 
without pCR. Therefore, identifying a pathologic response 
to nCRT as early as possible will be of great value for per-
sonalized treatment.

Magnetic resonance imaging (MRI) plays an increasingly 
important role in identifying the therapeutic response to pre-
operative treatment in rectal cancer [5]. Morphologic MRI 
can determine the T and N stages of LARC due to its excel-
lent soft-tissue contrast [6, 7], but it does little to assess the 
response to chemotherapy and radiation [8]. Functional MRI 
approaches such as diffusion-weighted imaging (DWI) [9] 
and dynamic contrast-enhanced MRI [10] have advantages 
in evaluating the treatment effect of LARC. Nevertheless, 

dynamic contrast-enhanced MRI requires the administration 
of an exogenous gadolinium contrast agent, which may cause 
some risks such as allergy and nephrogenic systemic fibrosis 
in a small percentage of patients, restricting its application in 
clinical practice. Based on a mono-exponential decay model, 
traditional DWI report shows the potential to predict treat-
ment response of LARC, but its performance remains con-
troversial across previous reports [11, 12].

Intravoxel incoherent motion DWI (IVIM-DWI) is on the 
basis of a bi-exponential model with the ability to quantitate 
the pure diffusion motion and perfusion-related motion of 
water molecules without the administration of gadolinium 
agent. Thus, IVIM-DWI is theoretically superior to conven-
tional DWI in providing the information of tumor micro-
environment related to treatment effect. Indeed, pretreatment 
IVIM-DWI is reportedly more powerful than traditional 
DWI in discriminating the pathological response of LARC 
to nCRT [13]. However, the performances of the baseline 
IVIM-DWI parameters on predicting pCR are conflicting 
across prior investigations on LARC [13–15]. A possible 
reason is that the findings in the above-mentioned reports 
[13–15] were based on the mean or percentiles values of 
IVIM-DWI parameters, which may not adequately reflect 
intratumoral heterogeneity [16, 17], a feature closely associ-
ated with therapeutic response [18].

Texture analysis can assess the heterogeneity within a 
tumor by quantitating the gray-level intensity or position of 
the pixels of an image [16, 19, 20]. Recently, several studies 
demonstrated that texture features derived from T2-weighted 
image [21, 22] and apparent diffusion coefficient (ADC) map 
[23] have the potential to predict the pathologic response, 
T down-staging or lymph node eradication of rectal cancer 
receiving nCRT. Theoretically, IVIM-DWI is more effec-
tive than morphologic MRI and conventional DWI in pre-
dicting the curative effect of chemoradiotherapy on tumors 
[13, 24–26]. Therefore, we hypothesize that texture analysis 
based on IVIM-DWI has a capacity to identify the pathologi-
cal response of LARC to nCRT. However, to the best of our 
knowledge, this capacity is still unclear until now, which 
prompts the present study to be conducted.

Materials and methods

Patient selection

This prospective single-center study was approved by the 
Medical Ethics Committee of our institution, and was con-
ducted in accordance with the Declaration of Helsinki. Writ-
ten informed consent was acquired from all patients. The 
inclusion criteria were (1) newly diagnosed non-mucinous 
adenocarcinoma with pathological confirmation, (2) sched-
uled for nCRT before surgical operation, (3) clinical stage 
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of II to III (cT3-4M0, and/or regional lymph node positive), 
and (4) over 18 years old. Patients were excluded if they (1) 
refused to participate, (2) received prior anti-tumor treat-
ment, or (3) had contraindication for nCRT, MRI, or surgery. 
In total, 45 patients were initially enrolled from January 
2017 to August 2017.

Conventional MRI protocol

All patients underwent conventional MRI examinations and 
IVIM-DWI on a 1.5-Tesla MRI scanner (Optima® MR360, 
GE Healthcare, Milwaukee, WI, USA) 1–3 days before 
nCRT, and a phased-array body coil was used. The imaging 
parameters are summed up in Table 1.

IVIM‑DWI protocol

IVIM-DWI was conducted on all patients after the conven-
tional MRI examinations. Twelve b values were applied in a 
single-shot diffusion-weighted spin-echo-planar (ssSE-DW-
EPI) sequence. Multiple b value measurements in one series 
were performed based on the modification of the lookup 
table of gradient direction. The details are shown in Table 1. 
In order to reduce the possible distortion and image degra-
dation, magnetic field shimming was performed every time 
before starting the DWI data acquisition, and all the MRI 
images were carefully reviewed and the patients with poor 
image quality would be eliminated.

IVIM‑DWI parametric values measurement

All the IVIM-DWI data were post-processed by the MADC 
Kit (a software package for multiple ADC measurements) 

in the Advantage Workstation (version AW 4.6, GE Medical 
Systems). Four IVIM-DWI parametric (ADC; pure diffu-
sion coefficient, D; pseudo-diffusion coefficient, D*; perfu-
sion fraction, f) maps of each primary rectal tumor were 
generated on the basis of a pixel-by-pixel fitting according 
to the Levenberg–Marquardt algorithm [27]. To determine 
the scope of each tumor, one radiologist (Observer A with 
11 years of experience in abdominal radiology) who was 
blinded to the clinicopathological characteristics and treat-
ment outcomes manually traced the outer edge of the lesion 
on each axial ADC map with reference to the T2-weighted 
image, and the corresponding two-dimensional (2D) region 
of interest (ROI) for each map was acquired. Both the most 
superior and the most inferior slices for each tumor were 
excluded to avoid volume averaging. Based on all the ROIs 
of this tumor, the MADC Kit automatically generated a 
three-dimensional (3D) volume of interest (VOI) and out-
put the mean ADC value of this VOI. The same VOI was 
also automatically copied and pasted by this software onto 
all the other IVIM-DWI maps. To avoid possible mismatch, 
these VOIs were further verified by the above radiologist, 
with reference to T2-weighted images. Subsequently, the 
corresponding IVIM-DWI parametric values were obtained.

After the acquirement of IVIM-DWI parametric values, 
the IVIM-DWI maps with ROI were saved as BMP format 
images for texture analysis. Additionally, all the conven-
tional MRI images and IVIM-DWI parametric maps in 
DICOM (digital imaging and communications in medicine) 
format were stored into the picture archiving and communi-
cation system (DHPACS® version 4.6.4, Donghua Software, 
Beijing, China) in our institution, as archive data.

Table 1   MRI protocol in this study

FSE fast spin echo

Parameter T1-weighted FSE 
images

T2-weighted FSE 
images

High-resolution 
T2-weighted FSE images

High-resolution 
T2-weighted FSE 
images

Intravoxel inco-
herent motion 
sequence

Acquisition plane Axial Axial Sagittal Perpendicular to the 
longitudinal axis of 
rectal lesion

Axial

b values (s/mm2) – – – – 0, 10, 20, 30, 
50, 80,100, 
150, 200, 400, 
600, 800

Repetition time (ms)/echo 
time (ms)

4694/102 4435/102 4500/102 4500/102 4500/97

Slice thickness (mm) 5 5 3 3 3
Slice gap (mm) 1 1 0.5 0.5 0.5
Field of view (mm2) 380 × 380 380 × 380 256 × 256 256 × 256 380 × 300
Acquisition matrix 320 × 224 320 × 224 200 × 200 200 × 200 128 × 130
Number of excitations 2 2 4 4 4
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Texture analysis

All the BMP format images were transferred into the MaZda 
program (http://www.elete​l.p.lodz.pl/progr​amy/mazda​/
index​.php?Actio​n=mazda​) for texture analysis. Because 
the ROIs on the IVIM-DWI parametric maps cannot be 
utilized directly by MaZda, one radiologist (Observer A) 
carefully manually traced the border of these original ROIs 
to generate new ROIs for texture analysis. Subsequently, a 
VOI for each tumor was generated automatically based on 
these new ROIs. For each VOI, gray-level normalization was 
performed by using μ ± 3σ (μ, gray-level mean; σ, gray-level 
standard deviation), to minimize the influence of contrast 
and brightness variation. For each IVIM-DWI parametric 
map, 5 first-order texture features (Mean, Kurtosis, Skew-
ness, Variance, and Median) and 11 GLCM features were 
extracted automatically from the VOI by MaZda, including 
Angular Second Moment (AngScMom), Contrast, Correlat, 
Difference Entropy (DifEntrp), Difference Variance (Dif-
Varnc), Entropy, Inverse Difference Moment (InvDfMom), 
Sum Average (SumAverg), Sum Entropy (SumEntrp), Sum 
of Squares (SumOfSqs), and Sum Variance (SumVarnc).

nCRT treatment

All patients received intensity-modulated radiation therapy 
for 5 weeks, accompanied by concurrent chemotherapy with 
oral capecitabine (1650 mg/m2 body-surface area) daily. The 
prescription dose was 45 Gy/25 fractions (1.8 Gy/fraction, 
1 fraction/day, 5 fractions/week) for the planning target vol-
ume, and 50 Gy/25 fractions (2.0 Gy/fraction, 1 fraction/day, 
5 fractions/week) for the gross tumor volume.

Pathological response assessment

TME was performed 8 weeks after the end of nCRT. The 
fresh specimens were soaked in formalin for 48 h after TME. 
A pathological expert with 12 years of experience in colo-
rectal pathology evaluated these tissue sections stained with 
haematoxylin–eosin. The pathological response to nCRT 
was classified in accordance with the Dworak tumor regres-
sion grade (TRG) system [28], namely, TRG 4, a fibrotic 
mass with no residual tumor (complete response); TRG 3, 
rare residual tumor cells scattered in the fibrosis; TRG 2, 
more residual tumor cells, but still less than fibrosis; TRG 1, 
more residual tumor than fibrosis; and TRG 0, no regression 
changes (no response). Patients with a TRG score of 4 were 
classified into the pCR group of the present study, while 
the other patients were divided into the non-pathological 
complete response (non-pCR) group.

Statistical analysis

All statistical analyses were done through SPSS version 22.0 
(SPSS Inc., Chicago, 162 IL, USA) or MedCalc v15.0 soft-
ware (MedCalc Software bvba, Ostend, Belgium). P < 0.05 
was regarded as statistically significant. The differences in 
the values of IVIM-DWI parameters and texture features 
between the pCR and non-pCR groups were investigated 
using the Mann–Whitney U test. To identify independent 
predictors, the indicators showing statistical significance 
(P < 0.05) in univariate analysis were selected as input vari-
ables in subsequent multivariate logistic regression analy-
sis (forward stepwise, LR; probability for stepwise entry, 
0.05; removal, 0.1). Receiver operating characteristic (ROC) 
curve analysis was conducted to explore the diagnostic per-
formance of these individual indicators and multivariate 
regression model for identifying pCR.

Results

Four patients were excluded from this study due to lack of 
TME procedure (n = 2), poor MRI image quality (n = 1), 
or withdrawal by the patient (n = 1). The cohort of this 
study eventually included 41 LARC patients (pCR, n = 9; 
non-pCR, n = 32). Table 2 lists the clinicopathological 

Table 2   Clinical and pathological characteristics of patients

nCRT​ neoadjuvant chemoradiotherapy, TRG​ tumor regression grade

Variables Number of 
patients

Gender
 Male 27
 Female 14

Degree of pathological differentiation
 High 7
 Middle 26
 Poor 8

Pretreatment T stage
 cT3 13
 cT4 28

Pretreatment N stage
 cN0 15
 cN1 17
 cN2 9

Pathological response to nCRT​
 TRG 4 9
 TRG 3 5
 TRG 2 18
 TRG 1 5
 TRG 0 4

http://www.eletel.p.lodz.pl/programy/mazda/index.php?Action=mazda
http://www.eletel.p.lodz.pl/programy/mazda/index.php?Action=mazda
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characteristics of this cohort. Among the 44 GLCM 
features, 11 exhibited evident difference between the 
pCR and non-pCR groups. Lower values of Contrast 
and DifVarnc derived from the ADC, D, and D* maps, 
respectively, together with lower CorrelatD value, were 
observed in the pCR group (all P < 0.05). Meanwhile, 
the pCR group exhibited higher CorrelatD*, Correlatf, 
SumAvergADC, and SumAvergD values than the non-pCR 
group (all P < 0.05), as shown in Tables 3, 4, 5, and 6. 
There were no significant differences in the values of 
IVIM-DWI parameters and first-order texture features 
between the two groups (Table 7). Figures 1 and 2 dem-
onstrate two examples of MRI and pathological images 
for LARC patients with different treatment responses. 

In univariate analysis, the values of area under the 
curve (AUC) of ROC curve for the individual predic-
tors ranged from 0.698 to 0.837, with sensitivities from 
43.75 to 87.50%, and specificities from 66.67 to 100.00% 
(Table 8). In multivariate logistic regression analysis, 
CorrelatD* (P < 0.001), DifVarncADC (P = 0.024), and 
DifVarncD (P < 0.001) were the independent predictors 
to pCR, with an AUC of 0.986 (95% confidence interval, 
0.958 to 1.000), a sensitivity of 93.75%, and a specificity 
of 100.00%.

Table 3   Differences in the GLCM features from the ADC map 
between the pCR and non-pCR groups

GLCM gray-level  co-occurrence matrix, ADC apparent diffusion 
coefficient

Texture features pCR (n = 9) Non-pCR(n = 32) P

AngScMomADC 0.046 ± 0.036 0.038 ± 0.026 0.443
ContrastADC 119.048 ± 79.454 220.858 ± 123.795 0.025*
CorrelatADC 0.831 ± 0.080 0.837 ± 0.069 0.833
DifEntrpADC 0.863 ± 0.206 0.944 ± 0.131 0.162
DifVarncADC 59.105 ± 31.025 93.139 ± 37.391 0.017*
EntropyADC 1.711 ± 0.328 1.755 ± 0.262 0.679
InvDfMomADC 0.518 ± 0.156 0.448 ± 0.124 0.162
SumAvergADC 77.997 ± 11.533 67.414 ± 14.324 0.049*
SumEntrpADC 1.402 ± 0.236 1.443 ± 0.184 0.581
SumOfSqsADC 155.581 ± 72.396 156.858 ± 54.264 0.954
SumVarncADC 578.447 ± 283.260 579.412 ± 211.693 0.991

Table 4   Differences in the GLCM features from the D map between 
the pCR and non-pCR groups

GLCM gray-level co-occurrence matrix, D pure diffusion coefficient

Texture features pCR (n = 9) Non-pCR(n = 32) P

AngScMomD 0.035 ± 0.016 0.044 ± 0.033 0.428
ContrastD 64.815 ± 33.729 248.338 ± 221.762 < 0.001*
CorrelatD − 0.086 ± 0.318 0.224 ± 0.530 0.039*
DifEntrpD 26.605 ± 7.421 27.020 ± 9.168 0.637
DifVarncD 16.463 ± 15.834 76.116 ± 63.312 < 0.001*
EntropyD 1.757 ± 0.237 1.725 ± 0.258 0.740
InvDfMomD 0.489 ± 0.134 0.455 ± 0.125 0.486
SumAvergD 74.259 ± 9.731 64.172 ± 15.464 0.027*
SumEntrpD 1.451 ± 0.155 1.418 ± 0.181 0.631
SumOfSqsD 155.161 ± 45.230 148.590 ± 51.512 0.733
SumVarncD 577.295 ± 184.076 547.854 ± 199.378 0.693

Table 5   Differences in the GLCM features from the D* map between 
the pCR and non-pCR groups

GLCM gray-level co-occurrence matrix, D* pseudo-diffusion coeffi-
cient

Texture features pCR (n = 9) Non-pCR (n = 32) P

AngScMomD* 0.038 ± 0.040 0.028 ± 0.176 0.270
ContrastD* 151.276 ± 82.759 300.287 ± 200.419 0.002*
CorrelatD* 0.562 ± 0.306 0.050 ± 0.519 0.001*
DifEntrpD* 0.953 ± 0.136 0.990 ± 0.114 0.422
DifVarncD* 65.457 ± 23.903 96.476 ± 37.420 0.024*
EntropyD* 1.925 ± 0.287 1.864 ± 0.257 0.828
InvDfMomD* 0.452 ± 0.120 0.396 ± 0.114 0.209
SumAvergD* 54.676 ± 12.749 58.180 ± 10.396 0.400
SumEntrpD* 1.500 ± 0.206 1.505 ± 0.187 0.949
SumOfSqsD* 211.201 ± 70.511 183.813 ± 54.461 0.219
SumVarncD* 797.913 ± 294.943 689.573 ± 217.179 0.230

Table 6   Differences in the GLCM features from the f map between 
the pCR and non-pCR groups

GLCM gray-level co-occurrence matrix, f perfusion fraction

Texture features pCR (n = 9) Non-pCR (n = 32) P

AngScMomf 0.029 ± 0.016 0.034 ± 0.041 0.698
Contrastf 37.467 ± 11.255 55.957 ± 41.818 0.492
Correlatf 0.766 ± 0.061 0.632 ± 0.201 0.002*
DifEntrpf 0.920 ± 0.093 0.957 ± 0.130 0.422
DifVarncf 23.187 ± 8.287 23.782 ± 7.635 0.840
Entropyf 1.836 ± 0.209 1.833 ± 0.301 0.978
InvDfMomf 0.440 ± 0.118 0.401 ± 0.116 0.388
SumAvergf 41.074 ± 11.003 44.328 ± 8.000 0.327
SumEntrpf 1.515 ± 0.154 1.490 ± 0.214 0.749
SumOfSqsf 167.957 ± 66.640 161.275 ± 58.660 0.771
SumVarncf 634.362 ± 296.206 603.281 ± 232.746 0.734
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Discussion

This study focused on the utility of texture features based 
on IVIM-DWI, together with mean parametric values, to 
identify pCR from non-pCR to preoperative chemoradio-
therapy of LARC. Our study found that the pCR and non-
pCR groups differed significantly from each other in the 
baseline GLCM features related to IVIM-DWI, which dem-
onstrated the potential of GLCM analysis to discriminate 
the pathological response status for LARC. Furthermore, 
GLCM analysis may be superior to the first-order texture 
analysis and traditional mean-parameter-value analysis when 
pretreatment IVIM-DWI is used to identify pCR in LARC.

In the current study, we investigated three types of 
indices derived from IVIM-DWI, including conventional 
mean parametric values, first-order texture features, and 
second-order texture features. Our finding that the pCR 
and non-pCR groups shared similar values of all the 4 
IVIM-DWI parameters suggested that the conventional 
IVIM-DWI method might not own the ability to predict 
pCR for LARC, which was in line with several prior 

investigations on rectal cancer [14, 15]. Nevertheless, Wen 
Lu et al. found that rectal cancers with a response of pCR 
after nCRT have obviously higher pretreatment D* and 
f values than those with non-pCR [13]. A recent report 
on LARC also demonstrated that the pCR group exhibits 
significantly lower baseline ADC and D values, compared 
with the non-pCR group [29]. Although these inconsistent 
findings might result from the differences in the clinico-
pathological characteristics, treatment regimens, imaging 
protocols, and data analysis methods across studies, a very 
possible reason is the difficulty for mean parametric value 
to quantify intratumor heterogeneity. Tumors are hetero-
geneous in the cellularity, angiogenesis, extravascular 
extracellular matrix, and areas of necrosis [16]. Intratumor 
heterogeneity is a feature closely associated with therapeu-
tic response [18]. The IVIM-related micro-environment 
features, such as cellularity, necrosis, and microcircula-
tion, obviously vary across different regions of malignant 
tumors [30]. However, analysis based on mean IVIM-DWI 
parametric values cannot describe the underlying spatial 
distribution [16, 31], and therefore cannot reflect intratu-
mor heterogeneity. Thus, using the mean values of IVIM-
DWI parameters to predict the treatment response of tumor 
may be not accurate enough.

Texture analysis is able to quantitatively evaluate intra-
tumoral heterogeneity by analyzing the variations of pixel 
or voxel gray levels in an image [32]. Among the methods 
utilized in texture analysis, statistical-based approach is most 
frequently used, which can provide three levels of texture 
features including first-, second-, and higher-order statistics. 
Histogram-based measures, commonly referred to as first-
order statistics, can reflect the intensity distribution of a VOI 
[33]. As a widely used texture analysis algorithm, gray-level 
co-occurrence matrix (GLCM) can provide second-order 
texture features that reflect the location of the pixels and 
the spatial interrelationship between gray values [34, 35]. 
GLCM features are found promising in the prediction of 
therapeutic response in many kinds of tumors [18, 23, 36, 
37]. In this study, there were significant differences in the 
GLCM features, rather than in the first-order texture fea-
tures, between the pCR and non-pCR groups, revealing that 
second-order texture features may have advantages over the 
first-order features obtained from IVIM-DWI maps in pre-
dicting the pathological response to nCRT in LARC. Similar 
observations were also reported by previous study on rectal 
or cervical cancers [15, 38]. For example, no relationship 
was found between the baseline median ADC, D, D*, or f 
value of rectal cancer and its response to chemoradiotherapy 
[15].

It is reported that the histogram metrics calculated from 
IVIM-DWI maps will not add to the median parametric val-
ues in discriminating the pathological response of rectal can-
cer to chemoradiotherapy [15]. Similarly, GLCM features 

Table 7   Differences in the first-order texture feature and parameter of 
IVIM-DWI between the pCR and non-pCR groups

ADC apparent diffusion coefficient, D pure diffusion coefficient, D* 
pseudo-diffusion coefficient, f perfusion fraction

Variables pCR (n = 9) Non-pCR (n = 32) P

ADC 1.274 ± 0.361 1.310 ± 0.277 0.751
D 1.055 ± 0.397 1.083 ± 0.274 0.809
D* 88.120 ± 46.379 64.960 ± 35.438 0.114
f 0.152 ± 0.044 0.184 ± 0.057 0.128
KurtosisADC 1.454 ± 5.788 − 0.750 ± 0.963 0.288
MeanADC 148.076 ± 18.979 134.350 ± 19.536 0.069
SkewnessADC − 1.059 ± 1.142 − 0.528 ± 0.525 0.208
VarianceADC 2276.408 ± 905.625 2459.557 ± 631.696 0.490
MedianADC 162.670 ± 20.365 145.720 ± 32.000 0.142
KurtosisD 0.115 ± 2.598 − 0.706 ± 1.093 0.380
MeanD 135.184 ± 22.232 128.891 ± 21.497 0.446
SkewnessD − 0.859 ± 0.776 − 0.546 ± 0.568 0.186
VarianceD 2298.412 ± 911.416 2312.163 ± 574.623 0.956
MedianD 149.220 ± 21.942 139.940 ± 33.896 0.338
KurtosisD* − 1.110 ± 0.271 − 0.999 ± 0.365 0.404
MeanD* 113.951 ± 21.551 113.595 ± 19.953 0.963
SkewnessD* − 0.091 ± 0.456 − 0.201 ± 0.448 0.522
VarianceD* 3417.391 ± 1137.318 2936.077 ± 732.697 0.133
MedianD* 115.110 ± 41.553 119.340 ± 31.004 0.739
Kurtosisf − 0.890 ± 0.517 − 0.682 ± 0.811 0.474
Meanf 88.714 ± 17.791 87.570 ± 15.809 0.853
Skewnessf 0.264 ± 0.394 0.410 ± 0.445 0.378
Variancef 2856.869 ± 874.541 2636.707 ± 714.428 0.441
Medianf 84.330 ± 30.919 79.940 ± 23.842 0.650
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Fig. 1   A patient with LARC from the pCR group. Images in sequence 
are pre- and post-therapy T2WI, VOI, pathological, and IVIM-DWI 
parametric maps. The pre- and post-therapy T2WI shows a relatively 
good response to nCRT. The pathological map (haematoxylin–eosin 
staining, original magnification × 40) after nCRT implies the absence 

of residual cancer (TRG 4). LARC​ locally advanced rectal cancer, 
pCR pathological complete response, T2WI T2-weighted imaging, 
VOI volume of interest, IVIM-DWI intravoxel incoherent motion 
diffusion-weighted imaging, nCRT​ neoadjuvant chemoradiotherapy, 
TRG​ tumor regression grade

Fig. 2   A patient with LARC from the non-pCR group. Images in 
sequence are pre- and post-therapy T2WI, VOI, pathological, and 
IVIM-DWI parametric maps. The pre- and post-therapy T2WI shows 
a relatively good response to nCRT. The pathological map (haema-
toxylin–eosin staining, original magnification × 40) after nCRT 

implies more residual tumor cells, but still less than fibrosis (TRG 
2). LARC​ locally advanced rectal cancer, pCR pathological complete 
response, T2WI T2-weighted imaging, VOI volume of interest, IVIM-
DWI intravoxel incoherent motion diffusion-weighted imaging, nCRT​ 
neoadjuvant chemoradiotherapy, TRG​ tumor regression grade
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generated from dynamic contrast-enhanced MRI images 
report can discriminate between the cured and relapsed cer-
vical cancer patients who underwent chemoradiotherapy, 
whereas the first-order features cannot [38]. These observa-
tions imply the advantage of GLCM analysis over the first-
order statistics in discriminating the pathological response of 
LARC, which may be because the first-order texture features 
do not provide spatial information of images and therefore 
they cannot provide sufficient information on tumor hetero-
geneity [17, 33, 34, 39].

Our data revealed that the pre-therapy Contrast, DifVarnc, 
Correlat, and SumAverg values differed markedly between 
the pCR and non-pCR groups in univariate analysis. Multi-
variate analysis in this study demonstrated that CorrelatD*, 
DifVarncADC, and DifVarncD severed as the independent 
indicators to pCR. These findings revealed that baseline 
GLCM features derived from IVIM-DWI could act as imag-
ing predictors of pCR in patients with LARC. Among these 
GLCM features, Correlation and SumAverg are not directly 
related to heterogeneity, whereas Contrast and DifVarnc are 
measures of tissue heterogeneity [39], that is to say, lower 
Contrast or DifVarnc means less heterogeneity [35, 36, 39, 
40]. In the present study, all the values of Contrast and Dif-
Varnc derived from the ADC, D, and D* maps in the pCR 
group were lower than those in the non-pCR group, imply-
ing that higher heterogeneity on IVIM-DWI maps may be 
associated with poorer therapeutic effect. This result was in 
line with several previous studies which indicated that higher 
heterogeneity on imaging maps is usually a sign of poorer 
outcome in a variety of malignancies such as rectal, breast, 
and cervical cancers [23, 38–41]. Rectal cancer respond-
ing favorably to nCRT has higher value of InvDfMom (a 
GLCM feature directly related to intratumoral homogeneity) 
on the pre-therapy ADC map [23], or exhibits both lower 
Entropy (a GLCM feature representing heterogeneity) value 

and higher Uniformity value on the pretreatment contrast-
enhanced CT images [41]. Similarly, lower baseline Contrast 
value was also found for the responders to chemotherapy on 
the baseline T1-weighted MRI images after the administra-
tion of gadolinium agent, compared with the non-responders 
with breast cancer [40]. In a recent study, higher Contrast 
values for cervical cancer on the pharmacokinetic parameter 
(enhancement amplitude and washout rate of contrast agent) 
maps of dynamic contrast-enhanced MRI [38] before nCRT 
also indicate a treatment outcome of relapse.

There are some limitations in the present study. First, a 
relatively small-study population was enrolled in this study, 
which may lead to statistical bias. Second, posttreatment 
texture features derived from IVIM-DWI were not inves-
tigated, which may bring about insufficient discussion on 
the relationship between the treatment response and texture 
features of LARC. Thus, further studies with larger sample 
size and analysis of posttreatment texture features gener-
ated from the IVIM-DWI maps are needed to better under-
stand the performance of texture features on the prediction 
of the treatment outcomes of LARC. Third, the images were 
assessed by a single radiologist in this study. Considering 
the excellent interobserver agreement observed in our and 
others’ studies [13, 15, 42], this limitation might not exert an 
obvious influence on accurately assessing the MRI images. 
Fourth, the process of copying VOI may lead to possible 
mismatch across different IVIM-DWI maps. As the four 
IVIM-DWI maps for each rectal lesion were generated from 
the same MRI data acquisition, the VOI drawn on the ADC 
map theoretically ought to match the VOIs on the other 3 
IVIM-DWI maps. Additionally, the VOIs in all IVIM-DWI 
maps were manually verified to further reduce the possibil-
ity of mismatch.

In conclusion, the present study implied that GLCM 
analysis based on IVIM-DWI may be a potential approach 

Table 8   Diagnostic efficacy 
of the GLCM features from 
the IVIM-DWI maps in 
differentiation between the pCR 
and non-pCR groups

GLCM gray-level co-occurrence matrix, IVIM-DWI intravoxel incoherent motion diffusion-weighted imag-
ing, AUC​ area under the curve, CI confidence interval, ADC apparent diffusion coefficient, D pure diffusion 
coefficient, D* pseudo-diffusion coefficient, f perfusion fraction

Texture features Cut-off value Sensitivity (%) Specificity (%) AUC (95% CI)

ContrastADC 200.989 81.25 66.67 0.750 (0.590–0.872)
ContrastD 112.5 68.75 100 0.809 (0.656–0.915)
ContrastD* 207.522 65.62 88.89 0.753 (0.594–0.874)
CorrelatD 0.188 56.25 88.89 0.705 (0.542–0.837)
CorrelatD* 0.527 87.50 88.89 0.837 (0.688–0.933)
Correlatf 0.699 56.25 100 0.719 (0.557–0.848)
DifVarncADC 100.729 46.88 100 0.760 (0.602–0.880)
DifVarncD 40.248 65.62 100 0.818 (0.666–0.921)
DifVarncD* 76.143 75.00 77.78 0.760 (0.602–0.880)
SumAvergADC 72.864 71.87 77.78 0.736 (0.575–0.861)
SumAvergD 60.095 43.75 100 0.698 (0.535–0.831)
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to identify the pathological response of LARC before start-
ing chemoradiotherapy.
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