Skip to main content

Advertisement

Log in

Quantitative dynamic contrast-enhanced MR imaging for differentiating benign, borderline, and malignant ovarian tumors

  • Published:
Abdominal Radiology Aims and scope Submit manuscript

Abstract

Purpose

This study aimed to investigate the diagnostic performance of quantitative DCE-MRI for characterizing ovarian tumors.

Methods

We prospectively assessed the differences of quantitative DCE-MRI parameters (Ktrans, kep, and ve) among 15 benign, 28 borderline, and 66 malignant ovarian tumors; and between type I (n = 28) and type II (n = 29) of epithelial ovarian carcinomas (EOCs). DCE-MRI data were analyzed using whole solid tumor volume region of interest (ROI) method, and quantitative parameters were calculated based on a modified Tofts model. The non-parametric Kruskal–Wallis test, Mann–Whitney U test, Pearson’s chi-square test, intraclass correlation coefficient (ICC), variance test, and receiver operating characteristic curves (ROC) were used for statistical analysis.

Results

The largest Ktrans and kep values were observed in ovarian malignant tumors, followed by borderline and benign tumors (all P < 0.001). Kep was the better parameter for differentiating benign tumors from borderline and malignant tumors, with a sensitivity of 89.3% and 95.5%, a specificity of 86.7% and 100%, an accuracy of 88.4% and 96.3%, and an area under the curve (AUC) of 0.94 and 0.992, respectively, whereas Ktrans was better for differentiating borderline from malignant tumors with a sensitivity of 60.7%, a specificity of 78.8%, an accuracy of 73.4%, and an AUC of 0.743. In addition, a combination with kep could further improve the sensitivity to 78.9%. The median Ktrans and kep values were significantly higher in type II than in type I EOCs.

Conclusion

DCE-MRI with volume quantification is a technically feasible method, and can be used for the differentiation of ovarian tumors and for discriminating between type I and type II EOCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kurman RJ, Carcangiu ML, Herrington CS, Young RH (2014) WHO classification of tumours of female reproductive organs. Lyon: IARC

    Google Scholar 

  2. Morgan RJ, Armstrong DK, Alvarez RD, et al. (2016) Ovarian cancer, version 1.2016, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw 14:1134–1163

    Article  Google Scholar 

  3. Kurman RJ, Shih IM (2010) The origin and pathogenesis of epithelial ovarian cancer – a proposed unifying theory. Am J Surg Pathol 34:433–443

    Article  Google Scholar 

  4. Satoh T, Hatae M, Watanabe Y, et al. (2010) Outcomes of fertility-sparing surgery for stage I epithelial ovarian cancer: a proposal for patient selection. J Clin Oncol 28:1727–1732

    Article  Google Scholar 

  5. Song T, Choi CH, Kim HJ, et al. (2011) Accuracy of frozen section diagnosis of borderline ovarian tumors. Gynecol Oncol 122:127–131

    Article  Google Scholar 

  6. Bazot M, Nassar-Slaba J, Thomassin-Naggara I, et al. (2006) MR imaging compared with intraoperative frozen-section examination for the diagnosis of adnexal tumors: correlation with final histology. Eur Radiol 16:2687–2699

    Article  Google Scholar 

  7. Vargas HA, Barrett T, Sala E (2013) MRI of ovarian masses. J Magn Reson Imaging 37:265–281

    Article  Google Scholar 

  8. García-Figueiras R, Padhani AR, Beer AJ, et al. (2015) Imaging of tumor angiogenesis for radiologists—Part 2: Clinical utility. Curr Probl Diagn Radiol 44(5):425–436

    Article  Google Scholar 

  9. Zahra MA, Hollingsworth KG, Sala E, Lomas DJ, Tan LT (2007) Dynamic contrast-enhanced MRI as a predictor of tumour response to radiotherapy. Lancet Oncol 8(1):63–74

    Article  Google Scholar 

  10. O’Connor JP, Jackson A, Parker GJ, Roberts C, Jayson GC (2012) Dynamic contrast-enhanced MR in clinical trials of antivascular therapies. Nat Rev Clin Oncol 9(3):167–177

    Article  Google Scholar 

  11. Miller JC, Pien HH, Sahani D, Sorensen AG, Thrall JH (2005) Imaging angiogenesis: applications and potential for drug development. J Natl Cancer Inst 97(3):172–187

    Article  CAS  Google Scholar 

  12. Kazerooni AF, Malek M, Haghighatkhah H, et al. (2017) Semiquantitative dynamic contrast-enhanced MRI for accurate classification of complex adnexal masses. J Magn Reson Imaging 45(2):418–427

    Article  Google Scholar 

  13. Mansour SM, Saraya S, EI-Faissal Y (2015) Semi-quantitative contrast-enhanced MR analysis of indeterminate ovarian tumours: when to say malignancy? Br J Radiol 1053(88):20150099. https://doi.org/10.1259/bjr.20150099

    Article  Google Scholar 

  14. Thomassin-Naggara I, Bazot M, Daraï E, et al. (2008) Epithelial ovarian tumors: value of dynamic contrast-enhanced MR imaging and correlation with tumor angiogenesis. Radiology 248(1):148–159

    Article  Google Scholar 

  15. Thomassin-Naggara I, Daraï E, Cuenod CA, et al. (2008) Dynamic contrast-enhanced magnetic resonance imaging: a useful tool for characterizing ovarian epithelial tumors. J Magn Reson Imaging 28(1):111–120

    Article  Google Scholar 

  16. Li HM, Qiang JW, Ma FH, Zhao SH (2017) The value of dynamic contrast-enhanced MRI in characterizing complex ovarian tumors. J Ovarian Res 10(1):4. https://doi.org/10.1186/s13048-017-0302-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dilks P, Narayanan P, Reznek R, Sahdev A, Rockall A (2010) Can quantitative dynamic contrast-enhanced MRI independently characterize an ovarian mass? Eur Radiol 20(9):2176–2183

    Article  Google Scholar 

  18. Bernardin L, Dilks P, Liyanage S, et al. (2012) Effectiveness of semi-quantitative multiphase dynamic contrast-enhanced MRI as a predictor of malignancy in complex adnexal masses: radiological and pathological correlation. Eur Radiol 22(4):880–890

    Article  Google Scholar 

  19. Patel N, Harris AL, Gleeson FV, Vallis KA (2012) Clinical imaging of tumor angiogenesis. Future Oncol 8(11):1443–1459

    Article  CAS  Google Scholar 

  20. Carter JS, Koopmeiners JS, Kuehn-Hajder JE, et al. (2013) Quantitative multiparametric MRI of ovarian cancer. J Magn Reson Imaging 38(6):1501–1509

    Article  Google Scholar 

  21. Priest AN, Gill AB, Kataoka M, et al. (2010) Dynamic contrast-enhanced MRI in ovarian cancer: Initial experience at 3 tesla in primary and metastatic disease. Magn Reson Med 63(4):1044–1049

    Article  Google Scholar 

  22. Sala E, Kataoka MY, Priest AN, et al. (2012) Advanced ovarian cancer: multiparametric MR imaging demonstrates response- and metastasis-specific effects. Radiology 263(1):149–159

    Article  Google Scholar 

  23. Thomassin-Naggara I, Balvay D, Aubert E, et al. (2012) Quantitative dynamic contrast-enhanced MR imaging analysis of complex adnexal masses: a preliminary study. Eur Radiol 22(4):738–745

    Article  Google Scholar 

  24. Thomassin-Naggara I, Soualhi N, Balvay D, Darai E, Cuenod CA (2017) Quantifying tumor vascular heterogeneity with DCE-MRI in complex adnexal massed: a preliminary study. J Magn Resson Imaging 46(6):1776–1785

    Article  Google Scholar 

  25. Wang HY, Su ZH, Xu X, et al. (2016) Dynamic contrast-enhanced MR imaging in renal cell carcinoma: reproducibility of histogram analysis on pharmacokinetic parameters. Sci Rep 6:29146. https://doi.org/10.1038/srep29146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. García-Figueiras R, Padhani AR, Beer AJ, et al. (2015) Imaging of tumor angiogenesis for radiologists—Part 1: biological and technical basis. Curr Probl Diagn Radiol 44(5):407–424

    Article  Google Scholar 

  27. Venkatasubramanian R, Arenas RB, Henson MA, Forbes NS (2010) Mechanistic modelling of dynamic MRI data predicts that tumor heterogeneity decreases therapeutic response. Br J Cancer 103(4):486–497

    Article  CAS  Google Scholar 

  28. Liu C, Wang K, Chan Q, et al. (2016) Intravoxel incoherent motion MR imaging for breast lesions: comparison and correlation with pharmacokinetic evaluation from dynamic contrast-enhanced MR imaging. Eur Radiol 26(11):3888–3898

    Article  Google Scholar 

  29. Yuan M, Zhang YD, Zhu C, et al. (2016) Comparison of intravoxel incoherent motion diffusion-weighted MR imaging with dynamic contrast-enhanced MRI for differentiating lung cancer from benign solitary pulmonary lesions. J Magn Reson Imaging 43(3):669–679

    Article  Google Scholar 

  30. Xian J, Du H, Wang X, et al. (2014) Feasibility and value of quantitative dynamic contrast enhancement MR imaging in the evaluation of sinonasal tumors. Chin Med J (Engl) 127(12):2259–2264

    Google Scholar 

  31. Shin JK, Kim JY (2017) Dynamic contrast-enhanced and diffusion-weighted MRI of estrogen receptor-positive invasive breast cancers: associations between quantitative MR parameters and Ki-67 proliferation status. J Magn Reson Imaging 45(1):94–102

    Article  Google Scholar 

  32. Zhang N, Zhang L, Qiu B, et al. (2012) Correlation of volume transfer coefficient Ktrans with histopathologic grades of gliomas. J Magn Reson Imaging 36(2):355–363

    Article  CAS  Google Scholar 

  33. Mitchell CL, O’Connor JP, Jackson A, et al. (2010) Identification of early predictive imaging biomarkers and their relationship to serological angiogenic markers in patients with ovarian cancer with residual disease following cytotoxic therapy. Ann Oncol 21(10):1982–1989

    Article  CAS  Google Scholar 

  34. Szubert S, Moszynski R, Michalak S, et al. (2016) The associations between serum VEGF, bFGF and endoglin levels with microvessel density and expression of proangiogenic factors in malignant and benign ovarian tumors. Microvasc Res 107:91–96

    Article  CAS  Google Scholar 

  35. Thukral A, Thomasson DM, Chow CK, et al. (2007) Inflammatory breast cancer: dynamic contrast-enhanced MR in patients receiving bevacizumab-initial experience. Radiology 244(3):727–735

    Article  Google Scholar 

  36. Inven M, Reerink O, Philippens ME (2015) Dynamic contrast MR imaging for rectal cancer response assessment after neo-adjuvant chemotherapy. J Magn Reson Imaging 41(6):1646–1653

    Article  Google Scholar 

  37. Sahani DV, Jiang T, Hayano K, et al. (2013) Magnetic resonance imaging biomarkers in hepatocellular carcinoma: association with response and circulating biomarkers after sunitinib therapy. J Hematol Oncol 6:51

    Article  CAS  Google Scholar 

  38. Yang J, Kim JH, Im GH, et al. (2011) Evaluation of antiangiogenic effects of a new synthetic candidate drug KR-31831 on xenografted ovarian carcinoma using dynamic contrast enhanced MRI. Korean J Radiol 12(5):602–610

    Article  Google Scholar 

  39. Li X, Cai Y, Moloney B, et al. (2016) Relative sensitivities of DCE-MRI pharmacokinetic parameters to arterial input function (AIF) scaling. J Magn Reson 269:104–112

    Article  CAS  Google Scholar 

  40. Yeo DM, Oh SN, Jung CK, et al. (2015) Correlation of dynamic contrast-enhanced MRI perfusion parameters with angiogenesis and biologic aggressiveness of rectal cancer: preliminary results. J Magn Reson Imaging 41(2):474–480

    Article  Google Scholar 

  41. Yi B, Kang DK, Yoon D, et al. (2014) Is there any correlation between model-based perfusion parameters and model-free parameters of time-signal intensity curve on dynamic contrast enhanced MRI in breast cancer patients? Eur Radiol 24(5):1089–1096

    Article  Google Scholar 

  42. Jackson A, O’Connor JP, Parker GJ, Jayson GC (2007) Imaging tumor vascular heterogeneity and angiogenesis using dynamic contrast-enhanced magnetic resonance imaging. Clin Cancer Res 13(12):3449–3459

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jin-wei Qiang or Guo-fu Zhang.

Ethics declarations

Funding

This study was funded by National Natural Science Foundation of China (Nos. 81471628 and 81501439), Nantong Municipal Commission of Health and Family Planning Science Foundation for Youth (No. WQ2016065), and Shanghai Municipal Commission of Health and Family Planning (Nos. 2013ZYJB0201, 2013SY075, and ZK2015A05).

Conflicts of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional research committee and with 1964 Helsinki declaration and its later amendments or comparable ethical standard.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Hm., Feng, F., Qiang, Jw. et al. Quantitative dynamic contrast-enhanced MR imaging for differentiating benign, borderline, and malignant ovarian tumors. Abdom Radiol 43, 3132–3141 (2018). https://doi.org/10.1007/s00261-018-1569-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-018-1569-1

Keywords

Navigation