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Abstract

Purpose Advanced medical image analytics is increasingly used to predict clinical outcome in patients diagnosed with gastro-
intestinal tumors. This review provides an overview on the value of radiomics in predicting response to treatment in patients with
gastrointestinal tumors.

Methods A systematic review was conducted, according to PRISMA guidelines. The protocol was prospectively registered
(PROSPERO: CRD42019128408). PubMed, Embase, and Cochrane databases were searched. Original studies reporting on the
value of radiomics in predicting response to treatment in patients with a gastrointestinal tumor were included. A narrative
synthesis of results was conducted. Results were stratified by tumor type. Quality assessment of included studies was performed,
according to the radiomics quality score.

Results The comprehensive literature search identified 1360 unique studies, of which 60 articles were included for analysis. In 37
studies, radiomics models and individual radiomic features showed good predictive performance for response to treatment (area
under the curve or accuracy > 0.75). Various strategies to construct predictive models were used. Internal validation of predictive
models was often performed, while the majority of studies lacked external validation. None of the studies reported predictive
models implemented in clinical practice.

Conclusion Radiomics is increasingly used to predict response to treatment in patients suffering from gastrointestinal cancer.
This review demonstrates its great potential to help predict response to treatment and improve patient selection and early
adjustment of treatment strategy in a non-invasive manner.
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Introduction

Gastrointestinal (GI) cancer is one of the leading causes of
cancer related deaths worldwide, resulting in approximately
2.8 million deaths annually [1]. To improve survival in these
patients, local and systemic treatment strategies are often com-
bined. Multimodality treatment can include resection, thermal
ablation, radiotherapy, transarterial embolization, and system-
ic therapy [2—-5]. Timing and intent of systemic therapy are
subject to tumor stage and pathology of the specimen.
Systemic treatment often has a palliative intent. However,
systemic therapy or chemoradiotherapy can also be used as
neoadjuvant treatment for downsizing the tumor to allow local
treatment with curative intent [3, 4]. Given the possible ad-
verse effects of treatment, selection and monitoring of patients
are crucial for optimal treatment results [6, 7].

Over the past decades, clinical oncology is shifting more and
more from “one therapy fits all” to “personalized cancer treat-
ment”. Advancements in technology and increased knowledge
about the underlying tumor biology contributed to this rise of
personalized cancer care. For example, new targeted therapies
attack or mimic specific molecules and pathways [8]. However,
it remains challenging to select patients likely to benefit from
treatment strategies as response can vary considerably between
patients [2, 9]. Prediction of response to treatment could there-
fore lead to improved personalized treatment.

To predict response to treatment, predictive models with
novel prognostic variables have emerged. Over the past de-
cade, research using advanced analytics, like radiomics, has
expanded substantially. Radiomics is an advanced method to
extract imaging features and thereby quantify tumor pheno-
type from medical images [10]. With use of radiomics, more
information can be obtained from a single medical image,
since hundreds of imaging features can be extracted and ana-
lyzed. Radiomic image features are broadly grouped into mor-
phological (size and shape) features, intensity-based features
describing the distribution of voxel intensities (e.g.,
Hounsfield units), textural features describing the relation-
ships between voxel values, and filter transformations [11].

Radiomics allows objective assessment of clinically rele-
vant features, such as features depicting tumor heterogeneity
as the human eye is not able to quantify tumor heterogeneity
in an objective manner [10, 11]. Radiomics may therefore
contribute to more objective and accurate response evalua-
tions. Moreover, these imaging features can be used in predic-
tive modeling in combination with other types of data
[10-12]. Predicting response with radiomics could lead to
selection of the most effective treatment based on patient-
and tumor-specific characteristics in a non-invasive manner.
Many studies have shown promising results of the use of
radiomics for predicting response to treatment in patients with
various types of cancer [13—15]. However, the predictive per-
formance of radiomics in patients with gastrointestinal tumors
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is unclear. We therefore conducted a systematic review on the
value of radiomics in predicting response to treatment in pa-
tients diagnosed with gastrointestinal tumors.

Methods
Search strategy

This study was performed according to the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) guidelines [16]. A comprehensive literature search
was conducted by a qualified librarian specialized in system-
atic reviews (EPJ). PubMed, Embase, and Cochrane electron-
ic databases were searched from database inception until 12
December 2019. Synonyms for the following topics were re-
ported as MeSH terms or keywords: gastrointestinal cancer,
advanced analytics, and tumor response. The complete search
strategy is listed in the Supplementary. The protocol of this
systematic review was prospectively registered with
PROSPERO (CRD42019128408) [17].

Study selection

Two members of the research team screened and selected
studies from the literature search independently (NJW and
TH). Studies describing advanced analytics (i.e., radiomics
or textural analysis) for prediction of tumor response to treat-
ment in patients with a gastrointestinal tumor were included
for analysis. Gastrointestinal tumors encompassed esophage-
al, gastric, (small) intestinal, colorectal, hepatic, pancreatic,
and gallbladder cancer. Imaging modalities included
(contrast-enhanced) computed tomography (CT), magnetic
resonance imaging (MRI), and positron emission tomography
(PET). Original studies, such as observational cohort studies
and clinical trials, were selected. Other publication types, like
reviews, meta-analysis, case reports, and conference abstracts,
were excluded from analysis. Reasons for exclusion were stat-
ed, and disagreement was resolved by re-evaluation and
discussion.

Data collection and analysis

Data were extracted by author NJW and checked by author
TH, using a pre-defined data extraction form. The following
data were collected: study population, treatment strategy,
timing and modality of diagnostic imaging for feature extrac-
tion, response assessment, number of analyzed and selected
(radiomic) features, and best predictive performance, includ-
ing discriminatory power and accuracy of (validated) models.
If multiple individual features were assessed, the best predic-
tive feature was reported. In the case that more than 15 param-
eters were selected, the parameters were not specified. Instead,
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a reference to the published paper was made. The primary
outcome of interest was the predictive performance of
radiomic features or models, reported as area under the receiv-
er operating curve (AUC) and/or accuracy. A narrative syn-
thesis of results was conducted, stratified by tumor type.

Quality assessment

Risk of bias and methodological quality of included studies
were assessed independently by both researchers (NW and
TH), according to the radiomics quality score (RQS). The
RQS was introduced to provide standardized evaluation
criteria and reporting guidelines for radiomics research to min-
imize bias and enhance the usefulness of prediction models
[10]. Sixteen key components were assessed, resulting in a
maximum score of 36 points. A higher score indicated higher
quality. Discrepancies in assessment of quality were resolved
by re-assessment and discussion.

Results

The comprehensive literature search identified 1360 unique
studies, of which 1263 were excluded based on screening of
title and abstract. Full texts of the remaining 97 studies were
assessed for eligibility. Of these studies, 60 were included for
analysis. Most common reason for exclusion is wrong study
outcome, followed by wrong study objective (Fig. 1).

1529 potentially eligible studies
identified by database search

A 4

169 duplicates removed

A 4

1360 studies identified
for screening

1263 excluded after abstract
and title screening

A 4

97 full-text studies
assessed for eligibility

37 tull-text studies excluded
3 wrong study population
10 wrong study objective
16 wrong study outcome
1 conference abstract

h 4 2 foreign language

5 no use of radiomics

A 4

60 studies included in
qualitative synthesis

Fig. 1 Flow diagram of study selection process

Esophageal cancer

The predictive value of radiomics in patients with esophageal
cancer was analyzed in 13/60 (21.7%) studies included for
analysis. In the majority of these studies, complete patholog-
ical response was assessed after chemoradiotherapy.
Radiomic features are most frequently derived from pre-
treatment PET imaging (Supplementary, Table 1).

Radiomic features were combined with clinical parameters
to construct a predictive model in 6/13 studies [18-23]. These
prediction models resulted in high-performance levels with
good discriminating power (AUC 0.69-0.92). Radiomics-
based models and individual radiomic features often
outperformed conventional metrics, such as standardized up-
take values (SUV) measurements (AUC 0.50-0.60) [19, 21,
24, 25].

Performance of various methods to construct predictive
models was analyzed [20, 21, 26-29]. Zhang et al. observed
that the combination of clinical, conventional PET and
radiomic PET features in a support vector machine (SVM)
model achieved highest accuracy in predicting complete path-
ologic response, while Ypsilantis et al. showed that a
convolutional neural network (CNN) outperformed machine
learning classifiers, including SVM, logistic regression model
(LR), random forest (RF), and gradient boosting [21, 28]. Two
studies from Hou et al. compared various prediction models
[26, 27]. An artificial neural network (ANN) and a SVM were
constructed, based on CT and MRI features, respectively.
Both models showed high accuracy in predicting response to
treatment after external validation. No statistically significant
difference was observed in the predictive performance of the
ANN and SVM models after internal validation, implying that
the choice of the models was not of substantial importance.
Although most studies in patients with esophageal cancer
showed radiomics to be predictive for response to treatment,
one study showed no association between pre- or post-
treatment radiomic features and response [30].

Gastric and gastroesophageal cancer

In total, 6/60 (10%) included studies focused on patients with
gastroesophageal cancer, including analysis of abdominal
cavity metastases of gastric cancer and gastroesophageal liver
metastases [31, 32]. In the latter, a lesion-based analysis on
196 metastases was performed [31]. Radiomic features were
derived from CT imaging. In the majority of studies, response
to chemotherapy is assessed, according to pathological regres-
sion grading and volumetric criteria (Supplementary,
Table 1).

Two studies combined radiomic features with clinical pa-
rameters [33, 34]. A three-point risk classification score was
obtained to predict complete response in patients with gastro-
esophageal cancer after chemoradiotherapy. This risk model,
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consisting of one radiomic feature and one clinical feature,
showed strong negative association with complete pathologic
response, overall survival, and progression-free survival [34].

In patients with gastrointestinal stromal tumors treated with
tyrosine kinase inhibitors, higher levels of four texture fea-
tures were positively correlated with disease progression.
The combination of these four features showed best discrim-
inatory power in predicting disease progression (AUC 0.83)
[33].

Radiomics models were often constructed with the use of
machine learning classifiers, including ANN, RF, and k-
nearest neighbor (KNN). These models showed good discrim-
inatory power (AUC 0.72—0.79) and accuracy (0.79-0.82) in
predicting response to chemotherapy or radiotherapy [31, 32,
35, 36]. Hou et al. showed similar predictive performance
between ANN and KNN models after external validation (ac-
curacy 0.82) [32]. Li et al. compared different combinations of
feature selection and classifier methods. The best predictive
performance was achieved by the combination of the filter-
based linear discriminant feature selection method with the RF
classifier (AUC 0.72) [35].

Primary colorectal cancer

In the majority of included studies, the predictive value of
radiomics was analyzed in patients diagnosed with colorectal
cancer (CRC). A total of 27/60 (45%) studies described pre-
diction of response to treatment in patients with primary CRC,
in particular in patients with locally advanced rectal cancer
(LARC) [37-63]. Pathologic response to chemoradiotherapy
(CRT) is most frequently assessed, and radiomic features are
predominantly derived from MRI (Supplementary, Table 1).

The methodology among studies varied considerably. The
predictive value of individual radiomic features was analyzed
in 10 studies, while radiomics-based prediction models were
constructed in the remaining 17 studies. Different types of
individual radiomic features were associated with complete
pathologic response to CRT [37, 39-45, 47, 63]. The predic-
tive value of entropy, kurtosis, skewness, and tumor volume
were most frequently described [37, 40-44]. Two studies re-
ported no significant association between PET texture features
and pathologic response to CRT in patients with LARC [38,
46].

In 4/17 studies, radiomic features were combined with clin-
ical parameters to construct predictive models [48, 50, 61, 62]
Prediction models of the remaining studies were solely based
on radiomic features [47, 49, 51-60, 63]. In 16/17 studies, the
models were found predictive for pathologic response with
good discriminative power (AUC 0.72-0.98) [47-52,
54-63]. The highest predictive performance was achieved
by the model constructed in the study of Liu et al., which
was based on a radiomics signature and tumor length (AUC
0.98) [62].
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Radiomics models were often constructed with the use of
machine learning classifiers, such as RF, SVM, ANN, and
deep neural network (DNN) [48, 51-53, 5658, 61]. In sev-
eral studies, radiomics models were compared. Bibault et al.
showed that a DNN outperformed the SVM model, created on
the same features. Moreover, improved predictive perfor-
mance was obtained compared to the LR model based on
TNM staging [48]. Shayesteh et al. analyzed machine learning
classifiers individually and together for response prediction
and reported best predictive performance for the ensemble of
machine learning models [57]. Two studies assessed the
added value of radiomics models in addition to radiologists
assessment. Where Horvat et al. observed that the radiomics
model outperformed the qualitative assessment of clinical
complete response by radiologists, Van Griethuysen et al.
showed similar predictive performance in radiologists’ assess-
ment of a subjective morphologic risk score [54, 60]. Even
though the majority of studies reported good predictive per-
formance of radiomics in patients with LARC, Hamerla et al.
reported no predictive value of radiomics in response to treat-
ment by a RF model, after results were corrected for imbal-
anced distribution (accuracy 50%) [53].

Metastatic colorectal cancer

A total of 6/60 (10%) included studies analyzed the predictive
value of radiomics in patients with metastatic CRC, of which
five studies focused solely on patients with colorectal liver
metastases [64—69]. In the majority of the studies, patients
were treated with chemotherapy, and radiomic features were
extracted from CT imaging before treatment. Response is
assessed according to RECIST, pathological regression grad-
ing, volume criteria, and diameter change per lesion
(Supplementary, Table 1).

Individual radiomic features were assessed in 5/6 studies,
showing good discriminative power in three studies (AUC
0.74-0.81), while in two studies, no significant association
was reported in multivariate analysis [65, 67]. Zhang et al.
performed a lesion-based analysis on 193 metastases and
found that features variance and angular second moment were
predictive for response, while Ahn et al. found lower skew-
ness and narrower standard deviation most predictive for re-
sponse [64, 69]. Notable was that Van Helden et al. observed
higher values of mean entropy in patients without response,
defined as stable and progressive disease, while Beckers et al.
observed a trend toward higher values of entropy in re-
sponders [65, 68]. Another study demonstrated that the
change (delta) in entropy and uniformity was most predictive
for pathologic response in univariate analysis, even though the
potential predictive value did not remain in multivariate anal-
ysis [67].

A radiomics model was constructed by Creasy et al.
predicting volumetric response with an average 20%
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prediction error. Clinical parameters were not combined with
radiomic features in constructing the model, but the associa-
tion between clinical parameters and response to treatment
was individually assessed. Parameters associated with re-
sponse were KRAS mutation status, age, systemic therapy reg-
imen, and treatment strategy (p < 0.05) [66].

Hepatic cellular carcinoma

The predictive value of radiomics in patients with hepatocel-
lular carcinoma (HCC) was assessed in 4/60 (6.7%) studies
[70-73]. Predominantly, radiomic features were derived from
CT imaging in patients treated with transarterial
chemoembolization. Tumor response is assessed according
to RECIST, modified RECIST, and Response Evaluation
Criteria in Cancer of the Liver (Supplementary, Table 1).

The predictive value of individual radiomic features was
assessed in 3/4 studies. Park et al. performed a lesion-based
analysis on 132 HCCs and found that several 2D and 3D
texture features in arterial phase were predictive for complete
response (AUC 0.59-0.72) [72]. Kloth et al. reported predic-
tive value of texture features in both arterial and portal venous
phase for complete response (AUC 0.74-0.80) [71]. Yu et al.
found that lower pre-treatment entropy and post-treatment en-
tropy and skewness were predictive for early response (AUC
0.65-0.76) in both phases [73].

Cozzi et al. constructed two models, comprising of radiomic
and clinical features in patients treated with volumetric modu-
lated arc therapy. In both LR models, a different single radiomic
feature was selected to predict response, namely gray-level non-
uniformity and energy, showing intermediate discriminative
power for response (AUC 0.64 and 0.67) [70].

Pancreatic cancer

In total, 4/60 (6.7%) included studies focused on patients with
pancreatic cancer [74—77]. In the majority of the studies,
radiomic features were extracted from CT imaging.
Response after chemotherapy, chemoradiotherapy, or radio-
therapy is assessed according to RECIST or pathologic grad-
ing of the resected specimen (Supplementary, Table 1).

The predictive value of individual radiomic features was
analyzed in 3/4 studies. Clinical parameters were included in
two of these studies to determine whether radiomic features
could be considered independent prognostic factors in multi-
variate analysis [74, 77]. Borhani et al. found that higher
values of mean positive pixel and chemotherapy regimen were
associated with favorable pathologic response [74]. They also
found that changes in kurtosis and skewness were correlated
with biochemical response, defined as more than 50% de-
crease of CA19-9 levels [74]. Yoo et al. concluded that mul-
tiple texture and SUV features changed during treatment and
were able to differentiate responders from non-responders

[77]. In the study of Ciaravino et al., patients that underwent
resection after downsizing neoadjuvant therapy were com-
pared to patients with disease progression during neoadjuvant
therapy. The results showed that kurtosis differed significantly
before and after neoadjuvant therapy in the downstaged
group. No significant changes between texture features were
found in the disease progression group [75].

Nasief et al. constructed a machine learning model for early
response prediction after neoadjuvant chemoradiotherapy.
They constructed a Bayesian neural network (BNN) incorpo-
rating delta radiomic features with high discriminatory power
(AUC 0.94) [76].

Radiomics quality score

The radiomics quality scores (RQS) of included studies are
shown in the Supplementary data, Table 2. The RQS ranged
from —4 to 23 out of 36 points (— 11-64%), with a median of
5 points (14%). No clear definition of high or low quality was
formulated in the RQS guideline; however, only 19 studies
scored over 30%. Different components for the quality and
generalizability of prediction models were assessed, including
feature robustness, overfitting of the model, external valida-
tion, and use of a prospective design. Total RQS scores are
plotted against the best predictive performance of the
radiomics models or features (Fig. 2). Studies with missing
data on best predictive performance (accuracy or area under
the curve) were excluded from these plots. No feature reduc-
tion or adjustment for multiple testing was performed in 14/60
(23%) of studies, which may have resulted in overfitting of
models [22-24, 37, 39-44, 67, 73-75]. Study populations
were relatively small compared to the number of parameters
analyzed. A median of 65 patients [range: 8-235] was includ-
ed per study, while a median of 72 parameters [range: 6—
19,985] was assessed. Forty-five (75%) studies included less
than 100 patients. In addition, studies often failed to maintain
the “one in ten” rule of thumb, encompassing a minimum of
ten patients for each predictive variable in the model
(Supplementary, Table 1). Internal validation was performed
by applying resampling methods in 24/60 (40%) of studies,
such as bootstrapping and cross-validation. However, only 15/
60 (25%) studies performed validation in an external dataset
[20, 22, 26, 27, 32, 34, 49, 50, 57, 60-62, 64, 66, 76]. Five
points were subtracted if studies lacked external validation, as
this is one of the most important components for model gen-
eralizability. A prospective study design was conducted in
only 7/60 (12%) of studies [43, 44, 49, 57, 59, 63, 77].

Discussion

This review shows the potential of radiomics in predicting
response to treatment in patients with GI cancer. High
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Fig. 2 Overview of the radiomics quality scores (RQS) plotted against
the best predictive performance of the radiomics models or features for
different tumor types: (a) esophageal cancer, (b) gastric and gastroesoph-
ageal cancer, and gastrointestinal stromal tumors (GIST), (c) primary
colorectal cancer, (d) metastatic colorectal cancer (mCRC), hepatic

discriminatory power and accuracy of individual radiomic
features and radiomics models were reported, in particular
for rectal and esophageal cancer. In this review, the individual
feature entropy, skewness and kurtosis were most frequently
found predictive of response. However, methodology varied
considerably among studies, particularly in feature extraction
and selection, model construction, and validation. Results be-
tween studies were therefore difficult to compare. The major-
ity of studies analyzed small study populations, potentially
resulting in overfitting of models. Moreover, studies often
lacked external validation, which affected the generalizability
of the prediction models. To determine the added value of
radiomics in clinical practice, direct effects of validated pre-
diction models need therefore to be further clarified.
Features describing tumor heterogeneity were most fre-
quently observed to be predictive of response. Entropy de-
scribes the pixel randomness and dissimilarity within a
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RQS score (%)

cellular carcinoma (HCC), pancreatic cancer. X-axis is the RQS score
depicted as percentage of the maximum score (36 points = 100%). Y-axis
is the best predictive performance of the radiomics features or models in
terms of area under the curve (AUC) or accuracy

grayscale image; thus, higher values of entropy reflect a het-
erogeneous distribution of pixels [11]. Tumor heterogeneity
has impact on clinical outcome and tumor response, since
tumors with greater intratumoral heterogeneity are often as-
sumed to have an aggressive biology [78]. However, no con-
sensus exists as contradictory results have been published.
These contradictory results may be explained by the lack of
standardized methodology in extracting and analyzing
radiomic features. Also the correlation between radiomic fea-
tures and biological substrates has not been established defin-
itively and could be different for the distinct tumor types.
The findings of this review demonstrate that the research
field of radiomics is emerging, as 30% of included studies
were published over the last year. These findings fit the trend
of shifting from “one therapy fits all”” to “personalized cancer
treatment” in clinical practice. Moreover, rapid developments
in advanced computed techniques have accelerated in the last
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decade. To our knowledge, this is the first review performed
to provide an overview of radiomics in predicting tumor re-
sponse in patients with GI cancer. Other reviews on radiomics
have been published with regard to patients suffering from
head and neck cancer, lung cancer, and breast cancer [13,
79-81]. The study of Granzier et al. focused on radiomics
predicting tumor response in patients with breast cancer
[79]. Similar to our review, entropy was the most frequently
identified predictive feature reported and logistic regression
the most frequently chosen model. In the study of Thawani
et al., not only the potential of radiomics for diagnosis and
prognosis was discussed but also the possibility to identify
genetic mutations, which was called radiogenomics [80]. In
accordance with the current findings, these reviews addressed
the importance of standardized methodology as well. The
great variation in methodology among studies is a barrier that
needs to be resolved before radiomics can be implemented in
clinical practice.

Radiomics is a promising method to tailor selection of pa-
tients for treatment strategies. If patients are likely to achieve
complete pathological response after neoadjuvant treatment, a
watch-and-wait strategy may be recommended instead of sur-
gery. [3, 82, 83] Patients are likely to maintain a better quality
of life with fewer treatment-related symptoms when often ex-
tensive surgery can be avoided, whereas exposure to unnec-
essary toxicity leading to adverse events may be spared in
patients likely to have poor or no response to neoadjuvant
treatment [6, 84]. Moreover, treatment strategy could be ad-
justed in a timely manner through early identification of pa-
tients who are likely to be unresponsive.

The potential utility of radiomics in clinical practice ap-
pears promising; however, most of the included studies lacked
external validation, and results were often “over fit” due to
small sample sizes. As a result, the predictive power may be
overestimated. In addition, the majority of the studies lacked
comparison of radiomics to standard of care (i.e., radiologists
assessment), and only two studies performed a decision curve
analysis [51, 62]. Therefore, the actual implementation of
radiomics in clinical practice still seems a prospect for the
future.

This review has some limitations. First, our findings are
subject to publication bias. Only five studies were identified
that described no significant association between radiomics
and tumor response. This could either be a reflection of pub-
lication bias or a reflection of the truth. Second, even though
the need for a meta-analysis of pooled metrics appeared evi-
dent, no meta-analysis stratified for tumor types could be per-
formed, due to heterogeneity of included studies.

In future research, external validation of predictive models
and cost-effectiveness analyses should be carried out, in order
to define the role of radiomics in clinical practice. In addition,
more standardized research in a prospectively manner is nec-
essary to determine the added value of radiomics in predicting

tumor response. Meta-analysis of data is needed to compare
predictive radiomics models, but this is not feasible due to
great variation in methodology. Therefore, we advocate exter-
nal validation of current radiomics models, instead of
conducting new models. The RQS and the Image
Biomarkers Standardization Initiative (IBSI) are promising
initiatives for standardization of radiomics research [10, 85].

In conclusion, radiomics is increasingly used to predict
response to treatment in patients with GI cancer. Our review
shows the great potential of this novel technique to help pre-
dict response to treatment and thereby to improve patient se-
lection and early adjustment of treatment strategy in a non-
invasive manner. However, as most studies lacked external
validation, methodology varied considerably, and no models
are implemented to predict response to treatment in patients
suffering from GI cancer, yet in daily practice, future standard-
ized research is warranted to determine the added value of
radiomics in clinical practice.
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