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Abstract

Purpose The purpose of this study was to determine if '*F-fluorodeoxyglucose positron emission tomography/magnetic resonance imaging
("®F-FDG PET/MRI) features are associated with contemporaneous metastases in patients with oesophageal/gastroesophageal cancer.
Methods Following IRB approval and informed consent, patients underwent a staging PET/MRI following '*F-FDG injection
(326 +28 MBq) and 156 + 23 min uptake time. First-order histogram and second-order grey level co-occurrence matrix features
were computed for PET standardized uptake value (SUV) and MRI T1-W, T2-W, diffusion weighted (DWI) and apparent
diffusion coefficient (ADC) images for the whole tumour volume. K-means clustering assessed the correlation of feature-pairs
with metastases. Multivariate analysis of variance (MANOVA) was performed to assess the statistical separability of the groups
identified by feature-pairs. Sensitivity (SN), specificity (SP), positive predictive value (PPV), negative predictive value (NPV),
and accuracy (ACC) were calculated for these features and compared with SUV .1, ADC p,ean and maximum diameter alone for
predicting contemporaneous metastases.

Results Twenty patients (18 males, 2 female; median 67 years, range 52—-86) comprised the final study cohort; ten patients had metastases.
Lower second-order SUV entropy combined with higher second-order ADC entropy were the best feature-pair for discriminating
metastatic patients, MANOVA p value <0.001 (SN =80%, SP =80%, PPV =80%, NPV =80%, ACC =80%). SUV 1,ax (SN =30%,
SP=80%, PPV =60%, NPV =53%, ACC =55%), ADC pean (SN =20%, SP =70%, PPV =40%, NPV =47%, ACC=45%) and
tumour maximum diameter (SN = 10%, SP =90%, PPV = 50%, NPV = 50%, ACC = 50%) had poorer sensitivity and accuracy.
Conclusion High ADC entropy combined with low SUV entropy is associated with a higher prevalence of metastases and a
promising initial signature for future study.

Keywords 'F-fluorodeoxyglucose positron emission tomography/magnetic resonance imaging - Oesophageal cancer - Radiomic
analysis
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Introduction

Oesophageal/gastroesophageal (GOJ) cancer is a leading
cause of cancer deaths worldwide with 572,034 new cases
annually [1]. Surgery combined with neoadjuvant chemother-
apy or chemoradiotherapy offers the best chance of cure. Data
from the OEO2 [2] and MAGIC [3] trials for GOJ cancer have
shown a 6 and 13% improvement in 5-year overall survival
for neoadjuvant chemotherapy, respectively; while the
CROSS trial [4] found a superior overall survival of 49 versus
24 months for neoadjuvant chemoradiotherapy plus surgery
versus surgery alone. Despite this, overall survival remains
poor, namely, the 5-year relative survival rate drops from 43
to 5% for localized and metastatic disease, respectively
(https://www.cancer.net/cancer-types/esophageal-cancer/
statistics).

Better patient stratification for treatment beyond our cur-
rent staging practice remains a key challenge for GOJ patients
given that quality of life remains poor for many patients post-
surgery, taking up to 3 years to return to pre-therapy levels [5].
'®F_fluorodeoxyglucose positron emission tomography/
magnetic resonance imaging ('*F-FDG-PET/MRI) has shown
promise as a one-stop imaging modality for oesophageal can-
cer [6]. A retrospective study of sequential '*F-FDG-PET/
MRI of 19 patients with non-metastatic oesophageal cancer,
comparing the diagnostic efficacy of endoscopic ultrasonog-
raphy (EUS), computed tomography (CT) and '*F-FDG-PET/
MRI for locoregional staging with a pathological reference
standard in 15 patients found similar T-staging accuracy and
slightly superior N-staging compared to EUS [6].

"F-FDG-PET/MRI also provides an opportunity to im-
prove imaging phenotyping by combining molecular, func-
tional and anatomical characteristics, lending itself to
radiomic approaches to improve PET/MRI data integration
[7]. Recent genomic analyses have highlighted genetic hetero-
geneity as an underlying cause for the differences in therapy
outcomes [8]. We hypothesised that tumours with metastatic
potential would demonstrate greater phenotypic heterogene-
ity. Thus, we aimed in the first instance to explore if any
radiomic imaging features derived from '*F-FDG-PET/MRI
are associated with metastases at staging in patients with GOJ
cancer.

Materials and methods
Patient enrolment

Following institutional review board approval and informed
consent, 24 prospective patients with newly diagnosed, histo-
logically proven GOJ cancer were recruited from 2015 to
2018. None of the patients had a history of previous malig-
nancy. All patients had undergone standard staging

investigations that included endoscopic ultrasound (EUS),
contrast-enhanced computed tomography (CT) of the thorax
and abdomen and '*F-FDG PET/CT, and their final staging
was documented in a multidisciplinary team (tumour review
board) meeting.

Image acquisition

Patients were injected with 326 + 28 MBq of '*F-FDG follow-
ing a 4-6 h fast, and blood glucose levels were verified as
<10.0 mmol/L. PET/MRI examinations were performed on
an integrated PET/MRI system (Biograph mMR, Siemens
Healthcare, Erlangen, Germany) immediately following a
clinical PET/CT acquisition. The mean+ SD time between
injection of '®F-FDG and integrated PET/MRI examination
was 156 +23 min. The PET/MRI was acquired from the skull
base to mid-thigh (comprising 4-5 bed positions depending
on patient height; 6 min per bed position). For each bed posi-
tion a 2-point Dixon Volumetric Interpolated Breath-
holdExamination (VIBE) sequence was applied to derive an
attenuation map (p-map) based on four tissue types: air, lung,
soft-tissue and fat [9]. Other sequences per bed position in-
cluded: T1-weighted Dixon VIBE (in-phase, out-of-phase, fat,
water images), T2-weighted Half-Fourier-Acquired Single-
shot Turbo spin Echo (HASTE) and free breathing diffusion-
weighted sequences (DWI, b values of 50 and 900 s/mm?). No
oral contrast was administered.

Tumour node metastasis (TNM) staging

TNM staging was assigned as per the American Joint
Committee on Cancer (AJCC) staging system (7th edition).
Final TNM stage was defined by all standard staging investi-
gations (not including '*F-FDG PET/MRI), documented in a
multidisciplinary tumour board meeting, and used to catego-
rize patients with metastatic versus non-metastatic disease.

Image analysis

For each sequence investigated, segmentation of the whole
tumour volume was performed manually by a dual-trained
nuclear medicine physician/radiologist (with >5 years’ expe-
rience) through visual interpretation using ImageJ [https:/
imagej.nih.gov/ij/, [10]]. Feature generation and selection
were performed using an in-house software based on
MATLAB (MathWorks, Natick, MA, USA). First-
(histogram) and second-order (grey-level co-occurrence ma-
trix) statistical features (n =24, Table 1) were computed for
PET standardized uptake value (SUV) and MRI T1-W, T2-W,
diffusion weighted and apparent diffusion coefficient (ADC)
images from the whole tumour volume (Fig. 1). The maxi-
mum tumour diameter, defined as the maximum axis length of
the tumour volume, was also measured.
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Table 1 List of the first and second order features investigated

Order Description Features

Mean

Standard deviation
Median

. Minimum

. Maximum

. 10th percentile
. 90th percentile
. Entropy

. Uniformity

10. Kurtosis

11. Skewness

12. Coefficient of

First-order ~ Global analysis based

on histogram intensity values

N N I Y N N

variation
Second-order Local analysis based on 13. Entropy
grey-level co-occurrence 14.Contrast

matrix (GLCM) 15. Homogeneity

16. Homogeneity
normalized

17. Angular second
moment

18. Joint maximum

19. Joint average

20. Joint variance

21. Inverse difference

22. Inverse difference
normalized

23. Correlation

24. Autocorrelation

Given the sample size, no more than two features were
analysed jointly so as to minimize overfitting and spurious
results. Feature selection started with a k-means (k=2) clus-
tering algorithm, an unsupervised classification method,
which does not require a priori information (Fig. 2). This
process iteratively identifies natural groupings, assigning

a

feature-pairs values to the “nearest” class, maximizing the
inter-class variance. Squared Euclidean distance was consid-
ered as similarity measure to determine the membership of the
feature-pairs. Then, as a second step, the correlation of
feature-pairs with the presence of metastases was analysed
automatically a posteriori. Linear discriminant analysis
(LDA) was used to determine the linear discrimination
boundary.

Statistical analysis

Multivariate analysis of variance (MANOVA) was performed
to assess the statistical separability of the groups identified by
feature-pairs (p <0.001). Sensitivity (SN), specificity (SP),
positive predictive value (PPV), negative predictive value
(NPV) and accuracy (ACC) were calculated to quantify the
discrimination ability of features in comparison with SUV .
ADCcan and tumour size. In order to assess the potential
impact that inter-observer variability might have on the feature
reproducibility, the segmented tumour volumes were
perturbed by performing automatic dilation and erosion, alter-
ing the lesion boundary by one pixel. Intraclass correlation
coefficient (ICC) was computed by considering the feature
values derived from dilated and eroded volumes. Statistical
analysis was performed on MATLAB© (MathWorks,
Natick, MA, USA).

Results

Four patients were excluded for technical reasons (bulk mo-
tion, DIXON fat-water swap, poor quality diffusion imaging)
precluding radiomic analysis, leaving 20 patients (18 male, 2

Cc

Fig. 1 Axial 8E_FDG PET (a), T1-weighted (b), T2-weighted (¢) and diffusion weighted (d) axial images of a GOJ cancer and respective tumour

volumes
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Fig. 2 Schema demonstrating tumour segmentation (a) and subsequent feature generation (b) and selection (¢) for '®F-FDG PET acquisition

female, median age 67 years, range 52-86 years). Their tu-
mour characteristics are summarised in Table 2. Ten patients
had evidence of metastases including liver [3], lung [2], bone
[1], and distant lymph nodes, e.g. retroperitoneal [6].

In terms of radiomic analysis, second-order GLCM entropy
derived from SUV and ADC were the best feature-pair for
discriminating patients with and without metastases (SN =
80%, SP =80%, PPV =80%, NPV =80%, ACC =80%). In
particular, combined lower GLCM entropy derived from
SUV and higher GLCM entropy from ADC, reflecting higher
parameter spatial homogeneity and heterogeneity, respective-
ly, was associated with metastatic disease. LDA proved the

Table 2 Summary of tumour characteristics as defined by
multidisciplinary meeting and incorporating all standard imaging tests

Tumour characteristics Number of occurrences,

n (N=20)
Tumour type Adenocarcinoma 17
Squamous carcinoma 3
T stage T1/2 0
T3/4 20
N stage Node negative 2
Node positive 18
M stage Non metastatic 10
Metastatic 10

two groups identified by the clustering were linearly separat-
ed. The equation for the optimal separation of patients with
and without metastatic disease is

K+ Lieapc + Lyesyy =0

where K=40.90, L; =—7.75, L, =6.25, espc and egyy are the

second-order entropy from ADC and SUYV, respectively.
Patients with metastatic disease belonged to the half-plane

given by the following inequality (Supplementary Figure 1):

K + Lieapc + Lresyy < 0

MANOVA confirmed that the means of these features for
the two groups of patients differed significantly, with a p value
<0.001. In comparison, SUV ., (SN=30%, SP=80%,
PPV =60%, NPV =53%, ACC=55%), ADCean (SN =
20%, SP =70%, PPV =40%, NPV =47%, ACC =45%) and
maximum tumour diameter alone (SN =10%, SP=90%,
PPV =50%, NPV =50%, ACC = 50%) had poorer sensitivity
and accuracy.

As far as the variability analysis was concerned, computed
dilation and erosion altered the PET volumes by 34.8 £8.1
and 30.6 £6.2%, respectively. PET feature reproducibility er-
rors for dilation and erosion were only 3.4+3.0 and 3.1+
2.3%, respectively. Analogously, while ADC volume varia-
tions for dilation and erosion were 14.6+2.8 and 13.9+
2.5%, respectively, feature reproducibility errors were 2.5 +
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1.1 and 3.1 + 1.8%, respectively. The ICC for ADC and SUV
GLCM entropy derived from dilated volumes were 0.96 and
0.98, respectively, while ICC derived from eroded volumes
were 0.94 and 0.98, indicating the selected features were high-
ly reproducible.

Discussion

Better patient stratification remains a key challenge for the
optimal management of GOJ patients. Our preliminary results
indicate that pairing '*F-FDG PET and MRI radiomic features
may highlight underlying GOJ biological heterogeneity asso-
ciated with contemporaneous metastatic disease. In particular
the combination of lower SUV second-order GLCM entropy
and higher ADC GLCM entropy, which represents lower and
higher local voxel heterogeneity (or irregularity), respectively,
had a sensitivity and specificity of 80% for the presence of
metastatic disease. Sensitivity was higher than SUV ..,
ADC | ,can Or maximum tumour diameter alone where sensitiv-
ity was 30, 20 and 10%, respectively.

Tissue accumulation of '*F-FDG is typically increased in
most cancers including GOJ cancers, related to overexpres-
sion of cell-surface glucose transporters and increased hexo-
kinase activity [11]. To date '"*F-FDG PET/CT prognostic
studies using SUV ., alone have reported mixed findings:
one study found a lower SUV,,,, in patients with metastatic
versus locally advanced primary tumours [12]; while another
study found higher SUV,,,,, in node positive versus node neg-
ative disease [13]. Other studies have found higher SUV .,
(>3.5) in poorer outcome ecarly cancers [14] and higher
SUV ax 1In poor responders to CRT at 1 year [15]. However,
a recent meta-analysis (n =798) has suggested that SUV .«
per se had no prognostic significance [16].

"8E_.FDG PET/CT radiomic studies have attempted to ad-
dress this with mixed results. In terms of prognosis, one study
(n =406, adenocarcinoma and squamous carcinomas, varied
therapies) found that lower first-order histogram energy,
higher kurtosis and total lesion glycolysis (TLG) were associ-
ated with poorer overall survival [17]. However, another study
by Nakajo et al. (n=52) [18] found no association between
radiomic features and progression-free and overall survival,
although this study highlighted greater intensity and size zone
variability in non-responders to chemoradiation.

Other radiomic studies have also found that various signa-
tures are predictive of therapy response. Tixier et al. (n=41,
including adenocarcinoma and squamous carcinoma) showed
that higher grey-level co-occurrence matrix (GLCM) homo-
geneity, lower grey-level size zone matrix (GLSZM) size zone
variability and run length matrix (RLM) intensity variability
differentiated responders from non-responders with sensitivi-
ties of 76-92% [19]. Beukinga et al. (n = 97, including adeno-
carcinoma and squamous carcinoma) found a higher PET-

@ Springer

derived grey-level run length (GLRL) long run low grey-
level emphasis in complete responders, and a clinical model
including GLRL long run low grey-level emphasis had a
higher area under the receiver operator curve (AUROC) com-
pared to SUV ., alone [20]. Similarly, Van Rossum et al. (n =
217, adenocarcinoma) found reduction in RLM run percent-
age, GLCM entropy, and post-chemoradiation roundness im-
proved prediction of response [21].

In contrast to higher FDG uptake, diffusion of water mol-
ecules is typically reduced in most cancers, again allowing
cancers to be detected and effects of therapy to be monitored
[22]. ADC represents the observed diffusion of water mole-
cules, calculated from the slope of signal attenuation plotted
against b-values. Of note, ADC is also influenced by factors
including microscopic perfusion, bulk motion, acquisition se-
quence parameters and tissue orientation [23]. ADC,cay is the
most commonly produced parameter and has good repeatabil-
ity [24]. Few diffusion MRI studies have been performed for
GOJ cancer to date with variable findings. A higher early
change in ADC,can [25] and higher change in ADCs4 percen-
tile [26] has been noted in responders versus non-responders
undergoing chemoradiation while another study found no as-
sociation between ADC histogram parameters and therapy
response [27].

Some studies have assessed if tumour size provides addi-
tional prognostic information. A study of squamous carcino-
ma (n = 387) found that small tumour size was an independent
predictor of good outcome; the addition of tumour size to the
AJCC TNM staging improved the predictive accuracy of the
S-year survival rate by 3.9% [28]. Studies of metabolic tumour
volume have also found that low volume tumours have a
better prognosis [29, 30]. In our study maximum tumour size
had a low sensitivity for metastatic disease.

To date no studies have assessed the potential value of
combining staging SUV and ADC parameters to provide in-
sight into the tumour phenotype although the association be-
tween SUV .« and ADC .., has been investigated in one
study (n =76, including adenocarcinoma and squamous car-
cinoma), showing no significant correlation [31].

The majority (85%) of our tumours were adenocarci-
nomas. These gland-forming tumours demonstrate a tu-
bular, tubulopapillary or papillary growth pattern.
Mucinous differentiation may be present in a small sub-
set. Well-differentiated tumours show more than 95%
gland formation while poorly differentiated tumours
show <50% gland formation and are a more aggressive
phenotype. Our metastatic signature of greater SUV lo-
cal homogeneity combined with higher ADC heteroge-
neity is promising. We propose the greater homogeneity
of SUV uptake on a local level relates to higher cellular
versus stromal volume, i.e. more tightly packed predom-
inantly FDG-avid tumour cells produce a more homoge-
neous tracer distribution. Greater local ADC
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heterogeneity likely reflects the varying glandular con-
tent, differentiation and mucinous content of tumours,
i.e. greater heterogeneity represents a more aggressive
histological subtype.

Nevertheless, there are a number of limitations to this
study. Firstly, this was an exploratory prospective study
and the number of patients was limited to 24, of which
only 20 proceeded for further radiomic analysis.
Secondly, while our findings of an association with con-
temporaneous metastases are promising, with a false
positive rate of only 20%, this requires further study,
including its potential as a future predictive or prognos-
tic biomarker. Thirdly, assessment of progression free or
overall survival was not undertaken due to our small
sample size. Fourthly, the timing of PET/MRI post in-
jection in our study was longer than 60 min. The im-
pact of scan timing on GOJ PET radiomic features is
unknown though a previous study including GLCM en-
tropy is reassuring [32]. Finally, although this was a
simultaneous acquisition using an integrated PET/MRI
scanner, some spatial mismatch between PET and MRI
data cannot be excluded given the location, and cardiac
and respiratory motion.

In summary, a combined radiomic approach has the poten-
tial to improve risk stratification in GOJ cancer. Quantitative
combined 'F-FDG PET and MRI features of the primary
tumour from simultaneous PET/MRI scans are associated
with a metastatic phenotype and may, in the future, help iden-
tify patients who will benefit from alternative therapeutic strat-
egies or closer surveillance.
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