Skip to main content

Advertisement

Log in

18F–FDG PET diagnostic and prognostic patterns do not overlap in Alzheimer’s disease (AD) patients at the mild cognitive impairment (MCI) stage

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

We aimed to identify the cortical regions where hypometabolism can predict the speed of conversion to dementia in mild cognitive impairment due to Alzheimer’s disease (MCI-AD).

Methods

We selected from the clinical database of our tertiary center memory clinic, eighty-two consecutive MCI-AD that underwent 18F–fluorodeoxyglucose (FDG) PET at baseline during the first diagnostic work-up and were followed up at least until their clinical conversion to AD dementia. The whole group of MCI-AD was compared in SPM8 with a group of age-matched healthy controls (CTR) to verify the presence of AD diagnostic-pattern; then the correlation between conversion time and brain metabolism was assessed to identify the prognostic-pattern. Significance threshold was set at p < 0.05 False-Discovery-Rate (FDR) corrected at peak and at cluster level. Each MCI-AD was then compared with CTR by means of a SPM single-subject analysis and grouped according to presence of AD diagnostic-pattern and prognostic-pattern. Kaplan-Meier-analysis was used to evaluate if diagnostic- and/or prognostic-patterns can predict speed of conversion to dementia.

Results

Diagnostic-pattern corresponded to typical posterior hypometabolism (BA 7, 18, 19, 30, 31 and 40) and did not correlate with time to conversion, which was instead correlated with metabolic levels in right middle and inferior temporal gyri as well as in the fusiform gyrus (prognostic-pattern, BA 20, 21 and 38). At Kaplan-Meier analysis, patients with hypometabolism in the prognostic pattern converted to AD-dementia significantly earlier than patients not showing significant hypometabolism in the right middle and inferior temporal cortex (9 versus 19 months; Log rank p < 0.02, Breslow test: p < 0.003, Tarone-Ware test: p < 0.007).

Conclusion

The present findings support the role of FDG PET as a robust progression biomarker even in a naturalist population of MCI-AD. However, not the AD-typical diagnostic-pattern in posterior regions but the middle and inferior temporal metabolism captures speed of conversion to dementia in MCI-AD since baseline. The highlighted prognostic pattern is a further, independent source of heterogeneity in MCI-AD and affects a primary-endpoint on interventional clinical trials (time of conversion to dementia).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jack CR Jr, Knopman DS, Jagust WJ, Shaw LM, Aisen PS, Weiner MW. Hypothetical model of dynamic biomarkers of the Alzheimer's pathological cascade. Lancet Neurol. 2010;9:119–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Dubois B, Feldman HH, Jacova C, Hampel H, Molinuevo JL, Blennow K. Advancing research diagnostic criteria for Alzheimer's disease: the IWG-2 criteria. Lancet Neurol. 2014;13:614–29.

    Article  PubMed  Google Scholar 

  3. Jack CR Jr, Bennett DA, Blennow K, Carrillo MC, Feldman HH, Frisoni GB. A/T/N: an unbiased descriptive classification scheme for Alzheimer disease biomarkers. Neurology. 2016;87:539–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Albert MS, DeKosky ST. Dickson D et al the diagnosis of mild cognitive impairment due to Alzheimer's disease: recommendations from the National Institute on Aging and Alzheimer's Association workgroup. Alzheimers Dement. 2011;7:270–9.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ossenkoppele R, van der Flier WM, Verfaillie SC, Vrenken H, Versteeg A, van Schijndel RA. Long-term effects of amyloid, hypometabolism, and atrophy on neuropsychological functions. Neurology. 2014;82:1768–75.

    Article  CAS  PubMed  Google Scholar 

  6. Chételat G, Desgranges B, De la Sayette V, Viadre F, Eustache F, Baron JC. Mild cognitive impairment: can FDG-PET predict who is to rapidly convert to Alzheimer’s disease? Neurology. 2003;60:1374–7.

    Article  PubMed  Google Scholar 

  7. Anchisi D, Borroni B, Franceschi M, et al. Heterogeneity of brain glucose metabolism in mild cognitive impairment and clinical progression to Alzheimer disease. Arch Neurol. 2005;62:1728–33.

    Article  PubMed  Google Scholar 

  8. Herholz K, Westwood S, Haense C, Dunn G. Evaluation of a calibrated (18)F-FDG PET score as a biomarker for progression in Alzheimer disease and mild cognitive impairment. J Nucl Med. 2011;52:1218–26.

    Article  PubMed  Google Scholar 

  9. Drzezga A, Grimmer T, Rimenschneider M, Lautenschlager N, Siebner H, Alexopoulus P, et al. Prediction of individual clinical outcome in MCI by means o genetic assessment and (18)F-FDG PET. J Nucl Med. 2005;46:1625–32.

    CAS  PubMed  Google Scholar 

  10. Morbelli S, Garibotto V, Van De Giessen E, et al. A Cochrane review on brain [18F]FDG PET in dementia: limitations and future perspectives. Eur J Nucl Med Mol Imaging. 2015;42:1487–91.

    Article  PubMed  Google Scholar 

  11. Pagani M, Dessi B, Morbelli S, et al. MCI patients declining and not-declining at mid-term follow-up: FDG-PET findings. Curr Alzheimer Res. 2010;7:287–94.

    Article  CAS  PubMed  Google Scholar 

  12. Doyle OM, Westman E, Marquand AF, et al. Predicting progression of Alzheimer's disease using ordinal regression. PLoS One. 2014;20(9):e105542.

    Article  Google Scholar 

  13. Pagani M, Giuliani A, Öberg J, De Carli F, Morbelli S, Girtler N, Arnaldi D, Accardo J, Bauckneht M, Bongioanni F, Chincarini A, Sambuceti G, Jonsson C, Nobili F. Progressive disintegration of brain networking from normal aging to Alzheimer Disease: Analysis of Independent Components of (18)F-FDG PET Data. J Nucl Med. 2017;58:1132–1139.

  14. McKhann GM, Knopman DS, Chertkow H, et al. The diagnosis of dementia due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement. 2011;7:263–9.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Petersen RC, Negash S. Mild cognitive impairment: an overview. CNS Spectr. 2008;13:45–53.

    Article  PubMed  Google Scholar 

  16. Pagani M, Giuliani A, Öberg J, et al. Predicting the transition from normal aging to Alzheimer's disease: a statistical mechanistic evaluation of FDG-PET data. NeuroImage. 2016;141:282–90.

    Article  PubMed  Google Scholar 

  17. Varrone A, Asenbaum S, Vander Borght T, et al. EANM procedure guidelines for PET brain imaging using [ 18F]FDG, version 2. EJNMMI. 2009;36:2103–10.

    Google Scholar 

  18. Della Rosa PA, Cerami C, Gallivanone F, et al. A standardized [18F]-FDG-PET template for spatial normalization in statistical parametric mapping of dementia. Neuroinformatics. 2014;12(4):575–93.

    Article  PubMed  Google Scholar 

  19. Friston KJ, Frith CD, Liddle PF, Frackowiak RS. Functional connectivity: the principal-component analysis of large (PET) data sets. J Cereb Blood Flow Metab. 1993;13:5–14.

    Article  CAS  PubMed  Google Scholar 

  20. Dukart J, Mueller K, Horstmann A, et al. Differential effects of global and cerebellar normalization on detection and differentiation of dementia in FDG-PET studies. NeuroImage. 2010;49:1490–5.

    Article  PubMed  Google Scholar 

  21. Oishi N, Udaka F, Kameyama M, Sawamoto N, Hashikawa K, Fukuyama H. Regional cerebral blood flow in Parkinson disease with nonpsychotic visual hallucinations. Neurology. 2005;65:1708–15.

    Article  CAS  PubMed  Google Scholar 

  22. Kaplan EL, Meier P. Nonparametric estimation from incomplete observations. J Amer Statist Assn. 1958;53:457–81.

    Article  Google Scholar 

  23. Morbelli S, Drzezga A, Perneczky R, et al. Resting metabolic connectivity in prodromal Alzheimer's disease. A European Alzheimer disease consortium (EADC) project. Neurobiol Aging. 2012;33:2533–50.

    Article  PubMed  Google Scholar 

  24. Mosconi L. Brain glucose metabolism in the early and specific diagnosis of Alzheimer's disease. FDG-PET studies in MCI and AD. Eur J Nucl Med Mol Imaging. 2005;32:486–510.

    Article  CAS  PubMed  Google Scholar 

  25. Nobili F, Salmaso D, Morbelli S, et al. Principal component analysis of FDG PET in amnestic MCI. Eur J Nucl Med Mol Imaging. 2008;35:2191–202.

    Article  PubMed  Google Scholar 

  26. Morbelli S, Piccardo A, Villavecchia G, Dessi B, Brugnolo A, Piccini A, et al. Mapping brain morphological and functional conversion patterns in amnestic MCI: a voxel-based MRI and FDG-PET study. Eur J Nucl Med Mol Imaging. 2010;37:36–45.

    Article  PubMed  Google Scholar 

  27. Ossenkoppele R, Schonhaut DR, Schöll M, et al. Tau PET patterns mirror clinical and neuroanatomical variability in Alzheimer's disease. Brain. 2016;139:1551–67.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ishiki A, Okamura N, Furukawa K, et al. Longitudinal assessment of tau pathology in patients with Alzheimer's disease using [18F]THK-5117 positron emission tomography. PLoS One. 2015;10:e0140311.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Chiotis K, Saint-Aubert L, Savitcheva I, et al. Imaging in-vivo tau pathology in Alzheimer's disease with THK5317 PET in a multimodal paradigm. Eur J Nucl Med Mol Imaging. 2016;43:1686–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Minoshima S, Giordani B, Berent S, Frey KA, Foster NL, Kuhl DE. Metabolic reduction in the posterior cingulate cortex in very early Alzheimer's disease. Ann Neurol. 1997;42:85–94.

    Article  CAS  PubMed  Google Scholar 

  31. Meguro K, Blaizot X, Kondoh Y, Le Mestric C, Baron JC, Chavoix C. Neocortical and hippocampal glucose hypometabolism following neurotoxic lesions of the entorhinal and perirhinal cortices in the non-human primate as shown by PET. Implications for Alzheimer's disease. Brain. 1999;122:1519–31.

    Article  PubMed  Google Scholar 

  32. Teipel S, Grothe MJ. Alzheimer’s Disease Neuroimaging Initiative. Does posterior cingulate hypometabolism result from disconnection or local pathology across preclinical and clinical stages of Alzheimer's disease? Eur J Nucl Med Mol Imaging. 2016;43:526–36.

    Article  CAS  PubMed  Google Scholar 

  33. Morbelli S, Arnaldi D, Capitanio S, Picco A, Buschiazzo A. Nobili F. Resting metabolic connectivity in Alzheimer’s disease. Clin Transl Imaging. 2013;1:271–8.

    Article  Google Scholar 

  34. Pagani M, De Carli F, Morbelli S, et al. Volume of interest-based [18F]fluorodeoxyglucose PET discriminates MCI converting to Alzheimer's disease from healthy controls. A European Alzheimer's disease consortium (EADC) study. Neuroimage Clin. 2014;7:34–42.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Morbelli S, Brugnolo A, Bossert I, et al. Visual versus semi-quantitative analysis of 18F-FDG-PET in amnestic MCI: an European Alzheimer's disease consortium (EADC) project. J Alzheimers Dis. 2015;44:815–26.

    CAS  PubMed  Google Scholar 

  36. Ossenkoppele R, Tolboom N, Foster-Dingley JC, et al. Longitudinal imaging of Alzheimer pathology using [11C]PIB, [18F]FDDNP and [18F]FDG PET. Eur J Nucl Med Mol Imaging. 2012;39:990–1000.

    Article  CAS  PubMed  Google Scholar 

  37. Drzezga A, Lautenschlager N, Siebner H, et al. Cerebral metabolic changes accompanying conversion of mild cognitive impairment into Alzheimer's disease: a PET follow-up study. Eur J Nucl Med Mol Imaging. 2003;30:1104–13.

    Article  PubMed  Google Scholar 

  38. Pagani M, Nobili F, Morbelli S, Arnaldi D, Giuliani A, Öberg J, Girtler N, Brugnolo A, Picco A, Bauckneht M, Piva R, Chincarini A, Sambuceti G, Jonsson C, De Carli F. Early identification of MCI converting to AD: a FDG PET study. Eur J Nucl Med Mol Imaging. 2017. doi: 10.1007/s00259-017-3761-x.

  39. Fouquet M, Desgranges B, Landeau B, et al. Longitudinal brain metabolic changes from amnestic mild cognitive impairment to Alzheimer's disease. Brain. 2009;132:2058–67.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Marshall GA, Rentz DM, Frey MT, Locascio JJ, Johnson KA, Sperling RA. Executive function and instrumental activities of daily living in mild cognitive impairment and Alzheimer's disease. Alzheimers Dement. 2011;7:300–8.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Roy K, Pepin LC, Philiossaint M, et al. Regional fluorodeoxyglucose metabolism and instrumental activities of daily living across the Alzheimer's disease spectrum. J Alzheimers Dis. 2014;42:291–300.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Torosyan N, Mason K, Dahlbom M. Silverman DHS; Alzheimer’sDisease neuroimaging initiative. Value of FDG-PET scans of non-demented patients in predicting rates of future cognitive and functional decline. Eur J Nucl Med Mol Imaging. 2017;44(8):1355–63.

    Article  CAS  PubMed  Google Scholar 

  43. Drzezga A, Riemenschneider M, Strassner BA, et al. Cerebral glucose metabolism in patients with AD and different APOE genotypes. Neurology. 2005;64:102–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Morbelli.

Ethics declarations

All the performed procedures were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Funding

No financial support has been provided for this study. The authors do not declare conflict of interest. Silvia Morbelli acted as consultant for Eli Lilly in 2014 and for Avid Radiopharmaceuticals in 2016 and Flavio Nobili acted as consultant for Eli Lilly in 2014.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morbelli, S., Bauckneht, M., Arnaldi, D. et al. 18F–FDG PET diagnostic and prognostic patterns do not overlap in Alzheimer’s disease (AD) patients at the mild cognitive impairment (MCI) stage. Eur J Nucl Med Mol Imaging 44, 2073–2083 (2017). https://doi.org/10.1007/s00259-017-3790-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-017-3790-5

Keywords

Navigation