Skip to main content
Log in

Dynamic 18F-fluoride small animal PET to noninvasively assess renal function in rats

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Renal function can be quantified by both laboratory and scintigraphic methods. In the case of small animal diagnostics, scintigraphic image-based methods are ideal since they can assess split renal function, work noninvasively, and can be repeated. The aim of this study is to validate a 18F-PET-based method to quantify renal function in rats.

Materials and methods

Fluoride clearance was calculated from a dynamic whole body listmode acquisition of 60 min length in a small animal PET scanner following an i.v. injection of 15 MBq 18F-fluoride. Volumes of interest (VOIs) were placed in the left ventricle and the bladder as well as traced around the kidney contours. The respective time–activity curves (TAC) were calculated. The renal 18F-clearance was calculated by the ratio of the total renal excreted activity (bladder VOI) and the integral of the blood TAC. PET-derived renal function was validated by intraindividual measurements of creatinine clearance (n = 23), urea clearance (n = 23), and tubular excretion rate (TER-MAG3). The split renal function was derived from the injection of the clinically available radionuclide 99mTc-mercaptotriglycine by blood sampling and planar renography (n = 8).

Results

In all animals studied, PET revealed high-quality TACs. PET-derived renal fluoride clearance was linearly correlated with intraindividual laboratory measures (PET vs. creatinine: r = 0.78; PET vs. urea: r = 0.73; PET vs. TER-MAG3: r = 0.73). Split function was comparable (18F-PET vs. MAG3-renography: r = 0.98). PET-derived measures were highly reproducible.

Conclusions

18F-PET is able to noninvasively assess renal function in rats and provides a significant potential for serial studies in different experimental scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Rahn KH, Heidenreich S, Bruckner D. How to assess glomerular function and damage in humans. J Hypertens 1999;17:309–17.

    Article  PubMed  CAS  Google Scholar 

  2. Levey AS. Measurement of renal function in chronic renal disease. Kidney Int 1990;38:167–84.

    Article  PubMed  CAS  Google Scholar 

  3. Berlyne GM, Varley H, Nilwarangkur S, Hoerni M. Endogenous creatinine clearance and glomerula filtration rate. Lancet 1964;22:874–6.

    Article  Google Scholar 

  4. Brochner-Mortensen J. Current status on assessment and measurement of glomerular filtration rate. Clin Physiol 1985;5:1–17.

    Article  PubMed  CAS  Google Scholar 

  5. Durand E, Prigent A. The basics of renal imaging and function studies. Q J Nucl Med 2002;46:249–67.

    PubMed  CAS  Google Scholar 

  6. Boubaker A, Prior JO, Meuwly JY, Bischof-Delaloye A. Radionuclide investigations of the urinary tract in the era of multimodality imaging. J Nucl Med 2006;47:1819–36.

    PubMed  CAS  Google Scholar 

  7. Lorenz JN. Considerations for the evaluation of renal function in genetically engineered mice. Curr Opin Nephrol Hypertens 2001;10:65–9.

    Article  PubMed  CAS  Google Scholar 

  8. Spak CJ, Berg U, Ekstrand J. Renal clearance of flouride in children and adolescents. Pediatrics 1985;75(3):575–9.

    PubMed  CAS  Google Scholar 

  9. Whitford GM, Pashley DH, Stringer GI. Fluoride renal clearance: a pH-dependent event. Am J Physiol 1976;230:527–32.

    PubMed  CAS  Google Scholar 

  10. Whitford GM. Intake and metabolism of fluoride. Adv Dent Res 1994;8:5–14.

    PubMed  CAS  Google Scholar 

  11. Maisey M. Radionuclide renography: a review. Curr Opin Nephrol Hypertens 2003;12:649–52.

    Article  PubMed  Google Scholar 

  12. Wieland BW, Bida GT, Padgett HC, Go H. Current status of CTI target systems for the production of PET radiochemicals. Proceedings of the 3rd Workshop on Targetry and Target Chemistry, Vancouver, British Columbia, Canada, 19–23 June 1989.

  13. Schäfers KP, Reader AJ, Kriens M, Knoess C, Schober O, Schafers M. Performance evaluation of the 32-module quadHIDAC small animal PET scanner. J Nucl Med 2005;46:996–1004.

    PubMed  Google Scholar 

  14. Bubeck B, Piepenburg R, Grethe U, Ehrig B, Hahn K. A new principle to normalize plasma concentrations allowing single-sample clearance determinations in both children and adults. Eur J Nucl Med 1992;19:511–6.

    Article  PubMed  CAS  Google Scholar 

  15. Smuts D. B. Ein experimenteller Beitrag zur Berechnung der Körperoberfläche von Maus, Meerschweinchen und Kaninchen. Pflügers Archiv Eur J Physiol 1933;1:105–10.

    Article  Google Scholar 

  16. Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986;1:307–10.

    PubMed  CAS  Google Scholar 

  17. Charkes ND, Brookes M, Makler PT Jr. Studies of skeletal tracer kinetics: II. Evaluation of a five-compartment model of [18F]fluoride kinetics in rats. J Nucl Med 1979;20:1150–7.

    PubMed  CAS  Google Scholar 

  18. Park-Holohan SJ, Blake GM, Fogelman I. Quantitative studies of bone using (18)F-fluoride and (99 m)Tc-methylene diphosphonate: evaluation of renal and whole-blood kinetics. Nucl Med Commun 2001;22:1037–44.

    Article  PubMed  CAS  Google Scholar 

  19. Yang B, Bankir L. Urea and urine concentrating ability: new insights from studies in mice. Am J Physiol Renal Physiol 2005;288:881–96.

    Article  CAS  Google Scholar 

  20. Darling IM, Morris ME. Evaluation of “true” creatinine clearance in rats reveals extensive renal secretion. Pharm Res 1991;8:1318–22.

    Article  PubMed  CAS  Google Scholar 

  21. Hawkins RA, Choi Y, Huang SC, Hoh CK, Dahlbom M, Schiepers C, Satyamurthy N, Barrio JR, Phelps ME. Evaluation of the skeletal kinetics of fluorine-18-fluoride ion with PET. J Nucl Med 1992;33:633–42.

    PubMed  CAS  Google Scholar 

  22. Nemzek JA, Bolgos GL, Williams BA, Remick DG. Differences in normal values for murine white blood cell counts and other hematological parameters based on sampling site. Inflamm Res 2001;50(10):523–7.

    Article  PubMed  CAS  Google Scholar 

  23. Jarnberg PO, Ekstrand J, Irestedt L. Renal fluoride excretion and plasma fluoride levels during and after enflurane anesthesia are dependent on urinary pH. Anesthesiology 1981;54:48–52.

    Article  PubMed  CAS  Google Scholar 

  24. Rouch AJ, Whitford GM, Campbell HT. Fluoride flux in the rabbit CCD: a pH-dependent event. Kidney Int 1992;41:342–9.

    Article  PubMed  CAS  Google Scholar 

  25. Yagil Y, Myers BD, Jamison RL. Course and pathogenesis of postischemic acute renal failure in the rat. Am J Physiol 1988;255:257–64.

    Google Scholar 

  26. Kharasch ED, Frink EJ Jr, Artru A, Michalowski P, Rooke GA, Nogami W. Long-duration low-flow sevoflurane and isoflurane effects on postoperative renal and hepatic function. Anesth Analg 2001;93:1511–20.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Marilyn Law, Anne Kanzog, and Christine Bätza for excellent support, to Daniel Burkert and Sven Fatum for producing 18F-fluoride, and to Liam Bergin for language editing of the manuscript. The study was supported in part by the Interdisciplinary Centre of Clinical Research IZKF Münster (ZPG 4b), the Innovative Medizinische Forschung (IMF) Münster and the Else-Kröner-Fresenius Foundation (P22/05//A43/05//F00).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uta Schnöckel.

Additional information

Uta Schnöckel and Stefan Reuter contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schnöckel, U., Reuter, S., Stegger, L. et al. Dynamic 18F-fluoride small animal PET to noninvasively assess renal function in rats. Eur J Nucl Med Mol Imaging 35, 2267–2274 (2008). https://doi.org/10.1007/s00259-008-0878-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-008-0878-y

Keywords

Navigation