Skip to main content
Log in

Enhanced accumulation of long-circulating liposomes modified with the nucleosome-specific monoclonal antibody 2C5 in various tumours in mice: gamma-imaging studies

  • Original article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

To further improve tumour targeting and delivery of imaging agents by long-circulating liposomes via the coupling of the anti-cancer monoclonal antibody 2C5 with nucleosome-restricted activity, which can recognize the surface of various tumours but not normal cells and can specifically target pharmaceutical carriers to tumour cells in vitro and in vivo.

Methods

The 2C5 antibody was attached to the surface of long-circulating PEG-liposomes (LCL) by the post-insertion technique after antibody modification with a single-terminus activated PEG-lipid derivative to yield nucleosome-specific tumour-targeted liposomes. Tumour cell binding of the targeted liposomes was verified both by fluorescence microscopy and by flow cytometry in several cell lines using fluorescently labelled liposomes. 111In-radiolabelled liposomal formulations (prepared using membrane-anchored chelating groups) were used to examine in vivo biodistribution and tumour accumulation of liposomes by direct gamma scintigraphy.

Results

The 2C5 antibody-modified LCL demonstrated a three- to eightfold increase in in vitro specific cell binding to various cancer cell lines of diverse origin. 111In-labelled tumour-targeted liposomes demonstrated prolonged circulation and doubled tumour accumulation compared with that of control formulations. Whole-body gamma scintigraphic imaging of mice implanted with different tumours revealed markedly faster (6 h post injection for 2C5-LCL vs 24 h for non-specific analogues) and superior in vivo tumour visualization with 111In-2C5-LCL than with the 2C5-free formulations in tested tumour models.

Conclusion

The 2C5 antibody-modified LCL effectively and specifically accumulate in various tumours and can serve as delivery vehicles for imaging agents, allowing for fast and efficient tumour visualization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov 2005;4:145–160

    Article  PubMed  CAS  Google Scholar 

  2. Klibanov AL, Maruyama K, Torchilin VP, Huang L. Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes. FEBS Lett 1990;268:235–237

    Article  PubMed  CAS  Google Scholar 

  3. Papahadjopoulos D, Allen TM, Gabizon A, Mayhew E, Matthay K, Huang SK, et al. Sterically stabilized liposomes: improvements in pharmacokinetics and antitumor therapeutic efficacy. Proc Natl Acad Sci U S A 1991;88:11460–11464

    Article  PubMed  CAS  Google Scholar 

  4. Allen TM, Hansen C, Martin F, Redemann C, Yau-Young A. Liposomes containing synthetic lipid derivatives of poly(ethylene glycol) show prolonged circulation half-lives in vivo. Biochim Biophys Acta 1991;1066:29–36

    Article  PubMed  CAS  Google Scholar 

  5. Maeda H. The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv Enzyme Regul 2001;41:189–207

    Article  PubMed  CAS  Google Scholar 

  6. Torchilin VP. Liposomes as delivery agents for medical imaging. Mol Med Today 1996;2:242–249

    Article  PubMed  CAS  Google Scholar 

  7. Phillips WT. Delivery of gamma-imaging agents by liposomes. Adv Drug Deliv Rev 1999;37:13–32

    Article  PubMed  CAS  Google Scholar 

  8. Tilcock C, Unger E, Cullis P, MacDougall P. Liposomal Gd-DTPA: preparation and characterization of relaxivity. Radiology 1989;171:77–80

    PubMed  CAS  Google Scholar 

  9. Kabalka GW, Davis MA, Moss TH, Buonocore E, Hubner K, Holmberg E, et al. Gadolinium-labeled liposomes containing various amphiphilic Gd-DTPA derivatives: targeted MRI contrast enhancement agents for the liver. Magn Reson Med 1991;19:406–415

    PubMed  CAS  Google Scholar 

  10. Schwendener RA, Wuthrich R, Duewell S, Wehrli E, von Schulthess GK. A pharmacokinetic and MRI study of unilamellar gadolinium-, manganese-, and iron-DTPA-stearate liposomes as organ-specific contrast agents. Invest Radiol 1990;25:922–932

    Article  PubMed  CAS  Google Scholar 

  11. Harrington KJ. Liposomal cancer chemotherapy: current clinical applications and future prospects. Expert Opin Investig Drugs 2001;10:1045–1061

    Article  PubMed  CAS  Google Scholar 

  12. Harrington KJ, Mohammadtaghi S, Uster PS, Glass D, Peters AM, Vile RG, et al. Effective targeting of solid tumors in patients with locally advanced cancers by radiolabeled pegylated liposomes. Clin Cancer Res 2001;7:243–254

    PubMed  CAS  Google Scholar 

  13. Harrington KJ, Lewanski CR, Northcote AD, Whittaker J, Wellbank H, Vile RG, et al. Phase I–II study of pegylated liposomal cisplatin (SPI-077) in patients with inoperable head and neck cancer. Ann Oncol 2001;12:493–496

    Article  PubMed  CAS  Google Scholar 

  14. Koukourakis MI, Koukouraki S, Giatromanolaki A, Archimandritis SC, Skarlatos J, Beroukas K, et al. Liposomal doxorubicin and conventionally fractionated radiotherapy in the treatment of locally advanced non-small-cell lung cancer and head and neck cancer. J Clin Oncol 1999;17:3512–3521

    PubMed  CAS  Google Scholar 

  15. Stewart SS, Harrington KJ. The biodistribution and pharmacokinetics of Stealth liposomes in patients with solid tumors. Oncology 1997;33–37

  16. Harrington KJ, Lewanski C, Northcote AD, Whittaker J, Peters AM, Vile RG, et al. Phase II study of pegylated liposomal doxorubicin (Caelyx) as induction chemotherapy for patients with squamous cell cancer of the head and neck. Eur J Cancer 2001;37:2015–2022

    Article  PubMed  CAS  Google Scholar 

  17. Koukourakis MI, Koukouraki S, Fezoulidis I, Kelekis N, Kyrias G, Archimandritis S, et al. High intratumoural accumulation of stealth liposomal doxorubicin (Caelyx) in glioblastomas and in metastatic brain tumours. Br J Cancer 2000; 83:1281–1286

    Article  PubMed  CAS  Google Scholar 

  18. Koukourakis MI, Koukouraki S, Giatromanolaki A, Kakolyris S, Georgoulias V, Velidaki A, et al. High intratumoral accumulation of stealth liposomal doxorubicin in sarcomas—rationale for combination with radiotherapy. Acta Oncol 2000;39:207–211

    Article  PubMed  CAS  Google Scholar 

  19. Allen TM. Ligand-targeted therapeutics in anticancer therapy. Nat Rev Cancer 2002;2:750–763.

    Article  PubMed  CAS  Google Scholar 

  20. Iakoubov LZ, Rokhlin O, Torchilin VP. Anti-nuclear autoantibodies of the aged reactive against the surface of tumor but not normal cells. Immunol Lett 1995;47:147–149

    Article  PubMed  CAS  Google Scholar 

  21. Iakoubov LZ, Torchilin VP. A novel class of antitumor antibodies: nucleosome-restricted antinuclear autoantibodies (ANA) from healthy aged nonautoimmune mice. Oncol Res 1997;9:439–446

    PubMed  CAS  Google Scholar 

  22. Torchilin VP, Iakoubov LZ, Estrov Z. Antinuclear autoantibodies as potential antineoplastic agents. Trends Immunol 2001;22:424–427

    Article  PubMed  CAS  Google Scholar 

  23. Chakilam AR, Pabba S, Mongayt D, Iakoubov LZ, Torchilin VP. A single monoclonal antinuclear autoantibody with nucleosome-restricted specificity inhibits the growth of diverse human tumors in nude mice. Cancer Therapy 2004;2:353–364

    Google Scholar 

  24. Torchilin VP, Lukyanov AN, Gao Z, Papahadjopoulos-Sternberg B. Immunomicelles: Targeted pharmaceutical carriers for poorly soluble drugs. Proc Natl Acad Sci U S A 2003;100:6039–6044

    Article  PubMed  CAS  Google Scholar 

  25. Lukyanov AN, Elbayoumi TA, Chakilam AR, Torchilin VP. Tumor-targeted liposomes: doxorubicin-loaded long-circulating liposomes modified with anti-cancer antibody. J Control Release 2004;100:135–144

    Article  PubMed  CAS  Google Scholar 

  26. Torchilin VP, Levchenko TS, Lukyanov AN, Khaw, BA, Klibanov AL, Rammohan R, et al. p-Nitrophenylcarbonyl-PEG-PE-liposomes: fast and simple attachment of specific ligands, including monoclonal antibodies, to distal ends of PEG chains via p-nitrophenylcarbonyl groups. Biochim Biophys Acta 2001;1511:397–411

    Article  PubMed  CAS  Google Scholar 

  27. Kabalka GW, Davis MA, Holmberg E, Maruyama K, Huang L. Gadolinium-labeled liposomes containing amphiphilic Gd-DTPA derivatives of varying chain length: targeted MRI contrast enhancement agents for the liver. Magn Reson Imaging 1991;9:373–377

    Article  PubMed  CAS  Google Scholar 

  28. Ishida T, Iden DL, Allen TM. A combinatorial approach to producing sterically stabilized (Stealth) immunoliposomal drugs. FEBS Lett 1999;460:129–133

    Article  PubMed  CAS  Google Scholar 

  29. Pastorino F, Brignole C, Marimpietri D, Sapra P, Moase EH, Allen TM, et al. Doxorubicin-loaded Fab’ fragments of anti-disialoganglioside immunoliposomes selectively inhibit the growth and dissemination of human neuroblastoma in nude mice. Cancer Res 2003;63:86–92

    PubMed  CAS  Google Scholar 

  30. Sou K, Endo T, Takeoka S, Tsuchida E. Poly(ethylene glycol)-modification of the phospholipid vesicles by using the spontaneous incorporation of poly(ethylene glycol)-lipid into the vesicles. Bioconjug Chem 2000;11:372–379

    Article  PubMed  CAS  Google Scholar 

  31. Brignole C, Marimpietri D, Gambini C, Allen TM, Ponzoni M, Pastorino F. Development of Fab′ fragments of anti-GD(2) immunoliposomes entrapping doxorubicin for experimental therapy of human neuroblastoma. Cancer Lett 2003;197:199–204

    Article  PubMed  CAS  Google Scholar 

  32. Klibanov AL, Muzykantov VR, Ivanov NN, Torchilin VP. Evaluation of quantitative parameters of the interaction of antibody-bearing liposomes with target antigens. Anal Biochem 1985;150:251–257

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the NIH grant R01-EB02995 to Vladimir P. Torchilin. We thank Dr. B.-A. Khaw of Northeastern University for his valuable help with the gamma-scintigraphic imaging studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir P. Torchilin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elbayoumi, T.A., Torchilin, V.P. Enhanced accumulation of long-circulating liposomes modified with the nucleosome-specific monoclonal antibody 2C5 in various tumours in mice: gamma-imaging studies. Eur J Nucl Med Mol Imaging 33, 1196–1205 (2006). https://doi.org/10.1007/s00259-006-0139-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-006-0139-x

Keywords

Navigation