Skip to main content
Log in

ARTP mutation and adaptive laboratory evolution improve probiotic performance of Bacillus coagulans

  • Applied microbial and cell physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Bacillus coagulans is a thermophilic, facultative anaerobic, spore-forming Gram-positive bacterium, which is used as a probiotic in animal feed and human dietary supplements. In the present study, a bile-resistant thermophilic B. coagulans WT-03 strain was isolated and genetically identified. Atmospheric pressure room temperature plasma (ARTP)–induced mutation combined with adaptive laboratory evolution (ALE) was used to improve the probiotic performance of B. coagulans WT-03. After 15 s of ARTP mutation and 40 days of ALE culture, a mutant artp-aleBC15 was obtained and showed the improved tolerance to pH 2.5 and 0.3% bile salt with a survival rate of 22.4%. Further studies showed that the artp-aleBC15 mutant exhibited a relatively stable morphology, lower permeability, and higher hydrophobicity of cell membrane compared with the parent strain of B. coagulans. Additionally, artp-aleBC15 could maintain homeostasis with an intracellular pH of over 4.5 and had the altered contents of saturated fatty acids/unsaturated fatty acids in the cell membrane at pH 2.5. Our study proved that ARTP mutation combined with ALE is an efficient mutagenesis strategy to improve the probiotic performance of B. coagulans for potential industrial use.

Key Points

• A B. coagulans strain that can grow at 80 °C and 0.3% bile salt was screened.

• ARTP combined with ALE effectively mutated B. coagulans WT-03.

• B. coagulans artp-aleBC15 mutant showed an improved probiotic performance.

• The mutant exhibited the lower permeability and altered fatty acid contents in the cell membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bevilacqua A, Racioppo A, Sinigaglia M, Speranza B, Campaniello D, Corbo MR (2019) A low-power ultrasound attenuation improves the stability of biofilm and hydrophobicity of Propionibacterium freudenreichii subsp. freudenreichii DSM 20271 and Acidipropionibacterium jensenii DSM 20535. Food Microbiol 78:104–109

    Article  CAS  PubMed  Google Scholar 

  • Breeuwer P, Drocourt J, Rombouts FM, Abee T (1996) A novel method for continuous determination of the intracellular pH in bacteria with the internally conjugated fluorescent probe 5 (and 6-)-carboxyfluorescein succinimidyl ester. Appl Environ Microbiol 62(1):178–183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Broadbent JR, Oberg TS, Hughes JE, Ward RE, Brighton C, Welker DL, Steele JL (2014) Influence of polysorbate 80 and cyclopropane fatty acid synthase activity on lactic acid production by Lactobacillus casei ATCC 334 at low pH. J Ind Microbiol Biotechnol 41(3):545–553

    Article  CAS  PubMed  Google Scholar 

  • Choe DH, Lee JH, Yoo M, Hwang SK, Sung BH, Cho SY, Palsson B, Kim SC, Cho BK (2019) Adaptive laboratory evolution of a genome-reduced Escherichia coli. Nat Commun 10(1):1–14

    Article  CAS  Google Scholar 

  • Cui LY, Wang SS, Guan CG, Liang WF, Xue ZL, Zhang C, Xing XH (2018) Breeding of methanol-tolerant Methylobacterium extorquens AM1 by atmospheric and room temperature plasma mutagenesis combined with adaptive laboratory evolution. Biotechnol J 13(6):1700679

    Article  CAS  Google Scholar 

  • Del Re B, Sgorbati B, Miglioli M, Palenzona D (2000) Adhesion, autoaggregation and hydrophobicity of 13 strains of Bifidobacterium longum. Lett Appl Microbiol 31(6):438–442

    Article  PubMed  Google Scholar 

  • Du B, Olson CA, Sastry AV, Fang X, Phaneuf PV, Chen K, Wu M, Szubin R, Xu S, Gao Y, Hefner Y, Feist AM, Palsson BO (2019) Adaptive laboratory evolution of Escherichia coli under acid stress bioRxiv 659706

  • El-Liethy MA, Hemdan BA, El-Taweel GE (2018) Phenotyping using semi-automated BIOLOG and conventional PCR for identification of Bacillus isolated from biofilm of sink drainage pipes. Acta Ecol Sin 38(5):334–338

    Article  Google Scholar 

  • FAO/WHO (2002) Guidelines for the evaluation of probiotics in food. Food and Agriculture Organization of the United Nations/World Health Organization, London, Ontario

  • Guo X, Li D, Lu W, Piao X, Chen X (2006) Screening of Bacillus strains as potential probiotics and subsequent confirmation of the in vivo effectiveness of Bacillus subtilis MA139 in pigs. Antonie Van Leeuwenhoek 90(2):139–146

    Article  CAS  PubMed  Google Scholar 

  • Guo Y, Tian X, Huang R, Tao X, Shah NP, Wei H, Wan C (2017) A physiological comparative study of acid tolerance of Lactobacillus plantarum ZDY 2013 and L. plantarum ATCC 8014 at membrane and cytoplasm levels. Ann Microbiol 67(10):669–677

    Article  Google Scholar 

  • Hossain MI, Sadekuzzaman M, Ha SD (2017) Probiotics as potential alternative biocontrol agents in the agriculture and food industries: a review. Food Res Int 100:63–73

    Article  CAS  PubMed  Google Scholar 

  • Jiang T, Qiao H, Zheng Z, Chu Q, Li X, Yong Q, Ouyang J (2016) Lactic acid production from pretreated hydrolysates of corn stover by a newly developed Bacillus coagulans strain. PLoS One 11(2):e0149101

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jose N, Bunt C, Hussain M (2015) Comparison of microbiological and probiotic characteristics of lactobacilli isolates from dairy food products and animal rumen contents. Microorganisms 3(2):198–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kapse NG, Engineer AS, Gowdaman V, Wagh S, Dhakephalkar PK (2019) Functional annotation of the genome unravels probiotic potential of Bacillus coagulans HS243. Genomics 111(4):921–929

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Park HD, Chung S (2012) Microfluidic approaches to bacterial biofilm formation. Molecules 17:9818–9834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi H, Takami H, Hirayama H, Kobata K, Usami R, Horikoshi K (1999) Outer membrane changes in a toluene-sensitive mutant of toluene-tolerant Pseudomonas putida IH-2000. J Bacteriol 181:4493–4498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kudo H, Sasaki Y (2019) Intracellular pH determination for the study of acid tolerance of lactic acid bacteria. In: Kanauchi M. (eds) Lactic acid bacteria. Methods in molecular biology, vol 1887. Humana Press, New York, NY

  • Kulkarni S, Haq SF, Samant S, Sukumaran S (2018) Adaptation of Lactobacillus acidophilus to thermal stress yields a thermotolerant variant which also exhibits improved survival at pH 2. Probiotics Antimicro Proteins 10(4):717–727

    Article  CAS  Google Scholar 

  • Lee JY, Seo J, Kim ES, Lee HS, Kim P (2013) Adaptive evolution of Corynebacterium glutamicum resistant to oxidative stress and its global gene expression profiling. Biotechnol Lett 35(5):709–717

    Article  CAS  PubMed  Google Scholar 

  • Li C, Zhao JL, Wang YT, Han X, Liu N (2009) Synthesis of cyclopropane fatty acid and its effect on freeze-drying survival of Lactobacillus bulgaricus L2 at different growth conditions. World J Microbiol Biotechnol 25(9):1659–1665

    Article  CAS  Google Scholar 

  • Li Y, Yan P, Lei Q, Li B, Sun Y, Li S, Lei H, Xie N (2019) Metabolic adaptability shifts of cell membrane fatty acids of Komagataeibacter hansenii HDM1-3 improve acid stress resistance and survival in acidic environments. J Ind Microbiol Biotechnol 46(11):1491–1503

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Yang H, Chen X, Sun B, Du G, Zhou Z, Song J, Fan Y, Shen W (2015) Significantly improving the yield of recombinant proteins in Bacillus subtilis by a novel powerful mutagenesis tool (ARTP): alkaline α-amylase as a case study. Protein Expr Purif 114:82–88

    Article  CAS  PubMed  Google Scholar 

  • Niederle MV, Bosch J, Ale CE, Nader-Macías ME, Ficoseco CA, Toledo LF, Valenzuela-Sánchez A, Soto-Azat C, Pasteris SE (2019) Skin-associated lactic acid bacteria from North American bullfrogs as potential control agents of Batrachochytrium dendrobatidis. PLoS One 14(9):e0223020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ou MS, Ingram LO, Shanmugam KT (2011) L(+)-lactic acid production from non-food carbohydrates by thermotolerant Bacillus coagulans. J Ind Microbiol Biotechnol 38(5):599–605

    Article  CAS  PubMed  Google Scholar 

  • Qian F, Jiang SJ, Liu T, Mu GQ (2013) Isolation and identification of thermostable lactase-producing Bacillus coagulans T242. In Advanced materials research (vol. 634, pp. 1253-1258). Trans Tech Publications

  • Qiang W, Ling-ran F, Luo W, Han-guang L, Lin W, Ya Z, Xiao-bin Y (2014) Mutation breeding of lycopene-producing strain Blakeslea trispora by a novel atmospheric and room temperature plasma (ARTP). Appl Biochem Biotechnol 174(1):452–460

    Article  CAS  PubMed  Google Scholar 

  • Reid G, Mba P, Reid DG (2001) Background paper for FAO/WHO expert consultation on evaluation of health and nutritional properties of probiotics in food including powder milk and live lactic acid bacteria. Food and Agriculture Organization of the United Nations and World Health Organization Expert Consultation Report

  • Shinde T, Vemuri R, Shastri MD, Perera AP, Tristram S, Stanley R, Eri R (2019) Probiotic bacillus coagulans MTCC 5856 spores exhibit excellent in-vitro functional efficacy in simulated gastric survival, mucosal adhesion and immunomodulation. J Funct Foods 52:100–108

    Article  CAS  Google Scholar 

  • Sun XM, Ren LJ, Bi ZQ, Ji XJ, Zhao QY, Huang H (2018) Adaptive evolution of microalgae Schizochytrium sp. under high salinity stress to alleviate oxidative damage and improve lipid biosynthesis. Bioresour Technol 267:438–444

    Article  CAS  PubMed  Google Scholar 

  • Tian X, Wang Y, Chu J, Zhuang Y, Zhang S (2016) Enhanced l-lactic acid production in Lactobacillus paracasei by exogenous proline addition based on comparative metabolite profiling analysis. Appl Microbiol Biotechnol 100(5):2301–2310

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Lu M, Wang S, Fang Y, Wang D, Ren W, Zhao G (2014) The atmospheric and room-temperature plasma (ARTP) method on the dextranase activity and structure. Int J Biol Macromol 70:284–291

    Article  CAS  PubMed  Google Scholar 

  • Xu N, Lv HF, Wei L, Liang Y, Ju JS, Liu J, Ma YH (2019) Impaired oxidative stress and sulfur assimilation contribute to acid tolerance of Corynebacterium glutamicum. Appl Microbiol Biotechnol 103(4):1877–1891

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Wu C, Du G, Chen J (2012) Enhanced acid tolerance in Lactobacillus casei by adaptive evolution and compared stress response during acid stress. Biotechnol Bioprocess Eng 17(2):283–289

    Article  CAS  Google Scholar 

  • Zhang X, Zhang XF, Li HP, Wang LY, Zhang C, Xing XH, Bao CY (2014a) Atmospheric and room temperature plasma (ARTP) as a new powerful mutagenesis tool. Appl Microbiol Biotechnol 98(12):5387–5396

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Chen X, Luo J, Qi B, Wan Y (2014b) An efficient process for lactic acid production from wheat straw by a newly isolated Bacillus coagulans strain IPE22. Bioresour Technol 158:396–399

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Zhang C, Zhou QQ, Zhang XF, Wang LY, Chang HB, Li HP, Oda Y, Xing XH (2015) Quantitative evaluation of DNA damage and mutation rate by atmospheric and room-temperature plasma (ARTP) and conventional mutagenesis. Appl Microbiol Biotechnol 99(13):5639–5646

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Zhang X, Xu GQ, Zhang XM, Shi JS, Xu ZH (2018) Integration of ARTP mutagenesis with biosensor-mediated high-throughput screening to improve l-serine yield in Corynebacterium glutamicum. Appl Microbiol Biotechnol 102(14):5939–5951

    Article  CAS  PubMed  Google Scholar 

  • Zhu X, Dong N, Wang Z, Ma Z, Zhang L, Ma Q, Shan A (2014) Design of imperfectly amphipathic α-helical antimicrobial peptides with enhanced cell selectivity. Acta Biomater 10(1):244–257

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was funded by a Jiangsu Special Research and Development Grant for Northern Jiangsu Area, China (SZ-YC2017001), the Key Research Project (Modern Agriculture) of Jiangsu Province (BE2017355), and the Jiangsu Agriculture Science and Technology Innovation Fund (JASTIF, no. CX(17)3044).

Author information

Authors and Affiliations

Authors

Contributions

F.-J.C. conceived the study, participated in its design and coordination, and drafted the manuscript. K.-Y. L. performed experiments, analyzed the data, and helped to draft the manuscript. H.F., B.-A. N., and T.-L.T. performed some of experiments and analyzed the data. X.-Y.Z., W.-J.S., and H.Y.C. helped to analyze data and draft the manuscript. All authors read and approved the manuscript.

Corresponding authors

Correspondence to FengJie Cui or WenJing Sun.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 190 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, K., Fang, H., Cui, F. et al. ARTP mutation and adaptive laboratory evolution improve probiotic performance of Bacillus coagulans. Appl Microbiol Biotechnol 104, 6363–6373 (2020). https://doi.org/10.1007/s00253-020-10703-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-020-10703-y

Keywords

Navigation