Skip to main content
Log in

Zinc supplementation decreases galactosylation of recombinant IgG in CHO cells

  • Biotechnological products and process engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Trace element composition of culture medium can be altered to modulate glycoform of recombinant glycoproteins. In this study, we show that Zn2+ supplementation at or above 100 μM decreases galactosylation of recombinant IgG expressed in Chinese Hamster Ovary cells. This decrease in galactosylation is not due to reduced galactosyltransferase expression. This effect persists upon supplementation of galactose and uridine to the culture, indicating that it may not be due to reduced UDP-Gal availability. Measurements of galactosyltransferase activity in the cell lysate show that activity decreases with increasing Zn2+/Mn2+ ratio. This suggests that one possible explanation of the effect of Zn2+ may be reduced intracellular galactosyltransferase activity due to increase in Zn2+/Mn2+ ratio. Consistent with this, the decrease in galactosylation of IgG could be reversed by supplementation of Mn2+ (a cofactor of galactosyltransferase) which increases intracellular Mn2+ content. Measurement of total intracellular Zn2+ content, however, indicates no significant upregulation of total intracellular Zn2+ content and no significant downregulation of intracellular Mn2+ content with Zn2+ supplementation. One possible explanation could be that cellular detoxification response to higher extracellular Zn2+ concentration might lead to changes in intracellular distribution of Mn2+. In this case, Zn2+ supplementation would be expected to interfere with other known effects of Mn2+. Indeed, the previously reported increase in high mannose glycans upon Mn2+ supplementation in the absence of glucose is reversed by Zn2+ supplementation. This study also suggests the use of Mn2+ supplementation as a strategy to overcome the effect of lot-to-lot variability in trace element concentrations on galactosylation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Beyersmann D, Haase H (2001) Functions of zinc in signaling, proliferation and differentiation of mammalian cells. BioMetals 14(3–4):331–341

    Article  PubMed  CAS  Google Scholar 

  • Blondeel EJM, Braasch K, McGill T, Chang D, Engel C, Spearman M, Butler M, Aucoin MG (2015) Tuning a MAb glycan profile in cell culture: supplementing N-acetylglucosamine to favour G0 glycans without compromising productivity and cell growth. J Biotechnol 214:105–112

    Article  PubMed  CAS  Google Scholar 

  • Campbell C, Stanley P (1984) A dominant mutation to ricin resistance in Chinese hamster ovary cells induces UDP-GlcNAc: glycopeptide beta-4-N-acetylglucosaminyltransferase III activity. J Biol Chem 259(21):13370–13378

    PubMed  CAS  Google Scholar 

  • Coyle P, Philcox JC, Rofe AM (1995) Hepatic zinc in metallothionein-null mice following zinc challenge: in vivo and in vitro studies. Biochem J 309(1):25–31

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • del Val IJ, Kontoravdi C, Nagy JM (2010) Towards the implementation of quality by design to the production of therapeutic monoclonal antibodies with desired glycosylation patterns. Biotechnol Prog 26(6):1505–1527. https://doi.org/10.1002/btpr.470

    Article  PubMed  CAS  Google Scholar 

  • Dionne B, Mishra N, Butler M (2017) A low redox potential affects monoclonal antibody assembly and glycosylation in cell culture. J Biotechnol 246:71–80

    Article  PubMed  CAS  Google Scholar 

  • Fimley WJ (1998) Manganese uptake and release by cultured human hepatocarcinoma (Hep-G2) cells. Biol Trace Elem Res 64(1):101–118

    Article  Google Scholar 

  • Fujishiro H, Yano Y, Takada Y, Tanihara M, Himeno S (2012) Roles of ZIP8, ZIP14, and DMT1 in transport of cadmium and manganese in mouse kidney proximal tubule cells. Metallomics 4(7):700–708

    Article  PubMed  CAS  Google Scholar 

  • Gawlitzek M, Ryll T, Lofgren J, Sliwkowski MB (2000) Ammonium alters N-glycan structures of recombinant TNFR-IgG: degradative versus biosynthetic mechanisms. Biotechnol Bioeng 68(6):637–646

    Article  PubMed  CAS  Google Scholar 

  • Gilbert A, Huang Y-M, Ryll T (2014) Identifying and eliminating cell culture process variability. Pharm Bioprocess 2(6):519–534

    Article  Google Scholar 

  • Gillmeister MP, Tomiya N, Jacobia SJ, Lee YC, Gorfien SF, Betenbaugh MJ (2009) An HPLC-MALDI MS method for N-glycan analyses using smaller size samples: application to monitor glycan modulation by medium conditions. Glycoconj J 26(9):1135–1149

    Article  PubMed  CAS  Google Scholar 

  • Grainger RK, James DC (2013) CHO cell line specific prediction and control of recombinant monoclonal antibody N-glycosylation. Biotechnol Bioeng 110(11):2970–2983

    Article  PubMed  CAS  Google Scholar 

  • Gramer MJ, Goochee CF (1993) Glycosidase activities in Chinese hamster ovary cell lysate and cell culture supernatant. Biotechnol Prog 9(4):366–373

    Article  PubMed  CAS  Google Scholar 

  • Haase H, Beyersmann D (1999) Uptake and intracellular distribution of labile and total Zn (II) in C6 rat glioma cells investigated with fluorescent probes and atomic absorption. BioMetals 12(3):247–254

    Article  PubMed  CAS  Google Scholar 

  • Hills AE, Patel A, Boyd P, James DC (2001) Metabolic control of recombinant monoclonal antibody N-glycosylation in GS-NS0 cells. Biotechnol Bioeng 75(2):239–251

    Article  PubMed  CAS  Google Scholar 

  • Hong JK, Cho SM, Yoon SK (2010) Substitution of glutamine by glutamate enhances production and galactosylation of recombinant IgG in Chinese hamster ovary cells. Appl Microbiol Biotechnol 88(4):869–876

    Article  PubMed  CAS  Google Scholar 

  • Hong JK, Lee SM, Kim K-Y, Lee GM (2014) Effect of sodium butyrate on the assembly, charge variants, and galactosylation of antibody produced in recombinant Chinese hamster ovary cells. Appl Microbiol Biotechnol 98(12):5417–5425

    Article  PubMed  CAS  Google Scholar 

  • Hossler P, Khattak SF, Li ZJ (2009) Optimal and consistent protein glycosylation in mammalian cell culture. Glycobiology 19(9):936–949

    Article  PubMed  CAS  Google Scholar 

  • Hossler P, Racicot C, Chumsae C, McDermott S, Cochran K (2017) Cell culture media supplementation of infrequently used sugars for the targeted shifting of protein glycosylation profiles. Biotechnol Prog 33(2):511–522

    Article  PubMed  CAS  Google Scholar 

  • Hossler P, Racicot C, McDermott S (2014) Targeted shifting of protein glycosylation profiles in mammalian cell culture through media supplementation of cobalt. J Glycobiol 3:1

    Google Scholar 

  • Kambe T, Tsuji T, Hashimoto A, Itsumura N (2015) The physiological, biochemical, and molecular roles of zinc transporters in zinc homeostasis and metabolism. Physiol Rev 95(3):749–784

    Article  PubMed  CAS  Google Scholar 

  • Kildegaard HF, Fan Y, Sen JW, Larsen B, Andersen MR (2016) Glycoprofiling effects of media additives on IgG produced by CHO cells in fed-batch bioreactors. Biotechnol Bioeng 113(2):359–366

    Article  PubMed  CAS  Google Scholar 

  • Kim BG, Park HW (2016) High zinc ion supplementation of more than 30 μM can increase monoclonal antibody production in recombinant Chinese hamster ovary DG44 cell culture. Appl Microbiol Biotechnol 100(5):2163–2170

    Article  PubMed  CAS  Google Scholar 

  • Kindermann B, Döring F, Fuchs D, Pfaffl MW, Daniel H (2005) Effects of increased cellular zinc levels on gene and protein expression in HT-29 cells. BioMetals 18(3):243–253

    Article  PubMed  CAS  Google Scholar 

  • Malhotra R, Wormald MR, Rudd PM, Fischer PB, Dwek RA, Sim RB (1995) Glycosylation changes of IgG associated with rheumatooid arthritis can activate complement via the mannose-binding protein. Nat Med 1(3):237–243

    Article  PubMed  CAS  Google Scholar 

  • May JM, Contoreggi CS (1982) The mechanism of the insulin-like effects of ionic zinc. J Biol Chem 257(8):4362–4368

    PubMed  CAS  Google Scholar 

  • McCracken NA, Kowle R, Ouyang A (2014) Control of galactosylated glycoforms distribution in cell culture system. Biotechnol Prog 30(3):547–553

    Article  PubMed  CAS  Google Scholar 

  • Palmiter RD (2004) Protection against zinc toxicity by metallothionein and zinc transporter 1. Proc Natl Acad Sci U S A 101(14):4918–4923

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Park JH, Noh SM, Woo JR, Kim JW, Lee GM (2016) Valeric acid induces cell cycle arrest at G1 phase in CHO cell cultures and improves recombinant antibody productivity. Biotechnol J 11(4):487–496

    Article  PubMed  CAS  Google Scholar 

  • Pels Rijcken WR, Overdijk B, Van den Eijnden DH, Ferwerda W (1995) The effect of increasing nucleotide-sugar concentrations on the incorporation of sugars into glycoconjugates in rat hepatocytes. Biochem J 305(3):865–870. https://doi.org/10.1042/bj3050865

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Permyakov EA, Reyzer IL, Berliner LJ (1993) Effects of Zn (II) on galactosyltransferase activity. J Protein Chem 12(5):633–638

    Article  PubMed  CAS  Google Scholar 

  • Pinilla-Tenas JJ, Sparkman BK, Shawki A, Illing AC, Mitchell CJ, Zhao N, Liuzzi JP, Cousins RJ, Knutson MD, Mackenzie B (2011) Zip14 is a complex broad-scope metal-ion transporter whose functional properties support roles in the cellular uptake of zinc and nontransferrin-bound iron. Am J Physiol Cell Physiol 301(4):C862–C871

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Polgári Z, Ajtony Z, Kregsamer P, Streli C, Mihucz VG, Réti A, Budai B, Kralovánszky J, Szoboszlai N, Záray G (2011) Microanalytical method development for Fe, Cu and Zn determination in colorectal cancer cells. Talanta 85(4):1959–1965

    Article  PubMed  CAS  Google Scholar 

  • Powell JT, Brew K (1976) Metal ion activation of galactosyltransferase. J Biol Chem 251(12):3645–3652

    PubMed  CAS  Google Scholar 

  • Raju TS, Jordan RE (2012) Galactosylation variations in marketed therapeutic antibodies. MAbs 4(3):385–391

    Article  PubMed  PubMed Central  Google Scholar 

  • Ramakrishnan B, Balaji PV, Qasba PK (2002) Crystal structure of β1,4-galactosyltransferase complex with UDP-Gal reveals an oligosaccharide acceptor binding site. J Mol Biol 318(2):491–502

    Article  PubMed  CAS  Google Scholar 

  • Reusch D, Tejada ML (2015) Fc glycans of therapeutic antibodies as critical quality attributes. Glycobiology 25(12):1325–1334

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rouiller Y, Périlleux A, MNl V, Stettler M, Jordan M, Broly H (2014) Modulation of mAb quality attributes using microliter scale fed-batch cultures. Biotechnol Prog 30(3):571–583

    Article  PubMed  CAS  Google Scholar 

  • Sha S, Agarabi C, Brorson K, Lee D-Y, Yoon S (2016) N-glycosylation design and control of therapeutic monoclonal antibodies. Trends Biotechnol 34(10):835–846

    Article  PubMed  CAS  Google Scholar 

  • Shen R, Wang S, Ma X, Xian J, Li J, Zhang L, Wang P (2010) An easy colorimetric assay for glycosyltransferases. Biochem Mosc 75(7):944–950

    Article  CAS  Google Scholar 

  • St Amand MM, Radhakrishnan D, Robinson AS, Ogunnaike BA (2014) Identification of manipulated variables for a glycosylation control strategy. Biotechnol Bioeng 111(10):1957–1970

    Article  PubMed  CAS  Google Scholar 

  • Surve T, Gadgil M (2014) Manganese increases high mannose glycoform on monoclonal antibody expressed in CHO when glucose is absent or limiting: implications for use of alternate sugars. Biotechnol Prog 31(2):460–467

    Article  PubMed  CAS  Google Scholar 

  • Thomann M, Reckermann K, Reusch D, Prasser J, Tejada ML (2016) Fc-galactosylation modulates antibody-dependent cellular cytotoxicity of therapeutic antibodies. Mol Immunol 73:69–75

    Article  PubMed  CAS  Google Scholar 

  • Thomason RT, Pettiglio MA, Herrera C, Kao C, Gitlin JD, Bartnikas TB (2017) Characterization of trace metal content in the developing zebrafish embryo. PLoS One 12(6):e0179318

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • U.S. Food and Drug Administration (2017) Considerations in demonstrating interchangeability with a reference product. Guidance for industry. Draft guidance. January 2017. https://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM537135.pdf. Accessed 1September 2017

  • Villiger TK, Steinhoff RF, Ivarsson M, Solacroup T, Stettler M, Broly H, Krismer J, Pabst M, Zenobi R, Morbidelli M, Soos M (2016) High-throughput profiling of nucleotides and nucleotide sugars to evaluate their impact on antibody N-glycosylation. J Biotechnol 229:3–12

    Article  PubMed  CAS  Google Scholar 

  • Weiser MM, Majumdar S, Wilson JR, Ramesh L (1987) Distribution, purification and characterization of rat intestinal UDPgalactose: N-acetylglucosaminyl (β1→4) galactosyltransferase. Biochim Biophys Acta 924(2):323–331

    Article  PubMed  CAS  Google Scholar 

  • Wentz AE, Hemmavanh D, Matuck JG (2015) Use of metal ions for modulation of protein glycosylation profiles of recombinant proteins. U.S.9598667 B2

  • Witsell DL, Casey CE, Neville MC (1990) Divalent cation activation of galactosyltransferase in native mammary Golgi vesicles. J Biol Chem 265(26):15731–15737

    PubMed  CAS  Google Scholar 

  • Wong NSC, Wati L, Nissom PM, Feng HT, Lee MM, Yap MGS (2010) An investigation of intracellular glycosylation activities in CHO cells: effects of nucleotide sugar precursor feeding. Biotechnol Bioeng 107(2):321–336

    Article  PubMed  CAS  Google Scholar 

  • Wong VVT, Ho KW, Yap MGS (2004) Evaluation of insulin-mimetic trace metals as insulin replacements in mammalian cell cultures. Cytotechnology 45(3):107–115

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yanagiya T, Imura N, Enomoto S, Kondo Y, Himeno S (2000) Suppression of a high-affinity transport system for manganese in cadmium-resistant metallothionein-null cells. J Pharmacol Exp Ther 292(3):1080–1086

    PubMed  CAS  Google Scholar 

  • Yang Z, Wang S, Halim A, Schulz MA, Frodin M, Rahman SH, Vester-Christensen MB, Behrens C, Kristensen C, Vakhrushev SY, Bennett EP, Wandall HH, Clausen H (2015) Engineered CHO cells for production of diverse, homogeneous glycoproteins. Nat Biotechnol 33:842–844

    Article  PubMed  CAS  Google Scholar 

  • Yuan N, Wang Y-h, Li K-j, Zhao Y, Hu X, Mao L, W-j Z, H-z L, W-j Z (2014) Effects of exogenous zinc on the cellular zinc distribution and cell cycle of A549 cells. Biosci Biotechnol Biochem 76(11):2014–2020

    Article  CAS  Google Scholar 

  • Yuk IH, Russell S, Tang Y, Hsu WT, Mauger JB, Aulakh RPS, Luo J, Gawlitzek M, Joly JC (2015) Effects of copper on CHO cells: cellular requirements and product quality considerations. Biotechnol Prog 31(1):226–238

    Article  PubMed  CAS  Google Scholar 

  • Zhao W-J, Song Q, Zhang Z-J, Mao L, Zheng W-J, Hu X, Lian H-Z (2015) The kinetic response of the proteome in A549 cells exposed to ZnSO4 stress. PLoS One 10(7):e0133451

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zödl B, Zeiner M, Sargazi M, Roberts NB, Marktl W, Steffan I, Ekmekcioglu C (2003) Toxic and biochemical effects of zinc in Caco-2 cells. J Inorg Biochem 97(4):324–330

    Article  PubMed  CAS  Google Scholar 

  • Zuqueli R, Prieto C, Etcheverrigaray M, Kratje R (2006) Effect of sodium butyrate and zinc sulphate supplementation on recombinant human IFN-β production by mammalian cell culture. Lat Am Appl Res 36(4):321–327

    CAS  Google Scholar 

Download references

Acknowledgements

MG acknowledges funding from the Department of Biotechnology, Government of India, and Council of Scientific & Industrial Research (CSIR). The authors are thankful for help from the MALDI MS facility at CSIR-NCL. MP-AES analyses were performed by Ms. Edna Joseph at the DST/DBT-BIRAC supported Venture Centre, at CSIR-NCL, Pune, India.

Conflict of interest

CSIR has filed a provisional patent application on the effect of zinc on galactosylation. The authors declare no other conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mugdha Gadgil.

Ethics declarations

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prabhu, A., Gadre, R. & Gadgil, M. Zinc supplementation decreases galactosylation of recombinant IgG in CHO cells. Appl Microbiol Biotechnol 102, 5989–5999 (2018). https://doi.org/10.1007/s00253-018-9064-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-018-9064-8

Keywords

Navigation