Skip to main content
Log in

Production of paclitaxel with anticancer activity by two local fungal endophytes, Aspergillus fumigatus and Alternaria tenuissima

  • Applied microbial and cell physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Among 60 fungal endophytes isolated from twigs, bark, and mature leaves of different plant species, two fungal isolates named TXD105 and TER995 were capable of producing paclitaxel in amounts of up to 84.41 and 37.92 μg L−1, respectively. Based on macroscopic and microscopic characteristics, ITS1–5.8S–ITS2 rDNA sequence, and phylogenetic characteristic analysis, the two respective isolates were identified as Aspergillus fumigatus and Alternaria tenuissima. In the effort to increase paclitaxel magnitude by the two fungal strains, several fermentation conditions including selection of the proper fermentation medium, agitation rate, incubation temperature, fermentation period, medium pH, medium volume, and inoculum nature (size and age of inoculum) were tried. Fermentation process carried out in M1D medium (pH 6.0) and maintained at 120 rpm for 10 days and at 25 °C using 4% (v/v) inoculum of 5-day-old culture stimulated the highest paclitaxel production to attain 307.03 μg L−1 by the A. fumigatus strain. In the case of the A. tenuissima strain, fermentation conditions conducted in flask basal medium (pH 6.0) and maintained at 120 rpm for 14 days and at 25 °C using 8% (v/v) inoculum of 7-day-old culture were found the most favorable to attain the highest paclitaxel production of 124.32 μg L−1. Using the MTT-based assay, fungal paclitaxel significantly inhibited the proliferation of five different cancer cell lines with 50% inhibitory concentration values varied from 3.04 to 14.8 μg mL−1. Hence, these findings offer new and alternate sources with excellent biotechnological potential for paclitaxel production by fungal fermentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

  • Cardellina JH (1991) HPLC separation of taxol and cephalomannine. J Liq Chromatogr 14:659–665

    Article  CAS  Google Scholar 

  • Dai W, Tao W (2008) Preliminary study on fermentation conditions of taxol-producing endophytic fungus. Chem Ind Eng Prog 27:883–886

  • Deng BW, Liu KH, Chen WQ, Ding XW, Xie XC (2009) Fusarium solani, Tax-3, a new endophytic taxol-producing fungus from Taxus chinensis. World J Microbiol Biotechnol 25:139–143

  • Dreyfuss MM, Chapela IH (1994) Potential of fungi in the discovery of novel, low molecular weight pharmaceuticals. In: Gullo VP (ed) The discovery of natural products with therapeutic potential. Butterworth-Heinemann, London, pp 49–80

  • Flores-Bustamante ZR, Rivera-Orduna FN, Martinez-Cardenas A, Flores-Cotera LB (2010) Microbial paclitaxel: advances and perspectives. J Antibiot 63:460–467

    Article  CAS  PubMed  Google Scholar 

  • Gangadevi V, Muthumary J (2009a) Taxol production by Pestalotiopsis terminaliae, an endophytic fungus of Terminalia arjuna (arjun tree). Biotechnol Appl Biochem 52:9–15

    Article  CAS  PubMed  Google Scholar 

  • Gangadevi V, Muthumary J (2009b) A novel endophytic taxol producing fungus Chaetomella raphigera isolated from a medicinal plant, Terminalia arjuna. Appl Biochem Biotechnol 158:675–684

    Article  CAS  PubMed  Google Scholar 

  • Garyali S, Kumar A, Reddy MS (2014) Enhancement of taxol production from endophytic fungus Fusarium redolens. Biotechnol Bioprocess Eng 19:908–915

    Article  CAS  Google Scholar 

  • Goodman J, Walsh V (2001) The story of taxol: nature and politics in the pursuit of an anti-cancer drug. Cambridge University Press, Cambridge, p 17

    Google Scholar 

  • Hao X, Pan J, Zhu X (2013) Taxol producing fungi. In: Ramawat KG, Merillon J-M (eds) Natural products: phytochemistry, botany and metabolism of alkaloids, phenolics and terpenes. Springer-Verlag, Berlin, p 2802

    Google Scholar 

  • Hemamalini V, Kumar DJM, Rebecca AIN, Srimathi S, Muthumary J, Kalaichelvan PT (2015) Isolation and characterization of taxol producing endophytic Phoma sp. from Calotropis gigantea and its anti-proliferative studies. J Acad Ind Res 3:645–649

    Google Scholar 

  • Herdeg C, Oberhoff M, Baumbach A, Blattner A, Axel DI, Schröder S, Heinle H, Karsch KR (2000) Local paclitaxel delivery for the prevention of restenosis: biological effects and efficacy in vivo. J Am Coll Cardiol 35:1969–1976

  • Kim SU, Strobel G, Ford E (1999) Screening of taxol-producing endophytic fungi from Ginkgo biloba and Taxus cuspidata in Korea. Agric Chem Biotechnol 42:97–99

    CAS  Google Scholar 

  • Kumaran RS, Hur BK (2009) Screening of species of the endophytic fungus Phomopsis for the production of the anticancer drug taxol. Biotechnol Appl Biochem 54:21–30

    Article  CAS  PubMed  Google Scholar 

  • Kumaran RS, Jung H, Kim HJ (2011) In vitro screening of taxol, an anticancer drug produced by the fungus, Colletotrichum capsici. Eng Life Sci 11:264–271

    Article  CAS  Google Scholar 

  • Kusari S, Hertweck C, Spiteller M (2012) Chemical ecology of endophytic fungi: origins of secondary metabolites. Chem Biol 19:792–798

    Article  CAS  PubMed  Google Scholar 

  • Li JY, Strobel G, Sidhu R, Hess WM, Ford EJ (1996) Endophytic taxol-producing fungi from bald cypress, Taxodium distichum. Microbiology 142:2223–2226

  • Li C, Li Y, Wang Q, Sung C (2008) Taxol production by Fusarium arthrosporioides isolated from yew, Taxus cuspidata. J Med Biochem 27:454–458

  • Li Y, Zhang G, Pfeifer BA (2014) Current and emerging options for taxol production. In: Schrader J, Bohlmann J (eds) Biotechnology of isoprenoids. Springer International Publishing, Switzerland, pp 405–425

    Chapter  Google Scholar 

  • Li G, Chun-Qiang T, Shu-Shen Y (2015) Optimization of Aspergillus fumigatus TMS-26 taxol production fermentation system by precursors, elicitors and fermentation conditions. Mycosystema 34:1165–1175

    Google Scholar 

  • Moubasher AH (1993) Soil fungi in Qatar and other Arab countries. The Centre for Scientific and Applied Research, Doha

    Google Scholar 

  • Nicolaou KC, Dai WM, Guy RK (1994) Chemistry and biology of taxol. Angew Chem Int Ed Engl 33:15–44

    Article  Google Scholar 

  • Pandi M, Kumaran RS, Choi YK, Kim HJ, Muthumary J (2011) Isolation and detection of taxol, an anticancer drug produced from Lasiodiplodia theobromae, an endophytic fungus of the medicinal plant Morinda citrifolia. Afr J Biotechnol 10:1428–1435

    CAS  Google Scholar 

  • Patel RN (1998) Tour de paclitaxel: biocatalysis for semisynthesis. Annu Rev Microbiol 52:361–395

  • Raper KB, Fennell DI (1965) The genus Aspergillus. The Williams and Wilkins Company, Baltimore

    Google Scholar 

  • Rui J, Ji-Chuan K, Ting-Chi W, Jing H, Bang-Xing L (2011) A study on optimal fermentation of an endophytic fungus producing taxol. Mycosystema 30:235–241

  • Ruiz-Sanchez J, Flores-Bustamante ZR, Dendooven L, Favela-Torres E, Soca-Chafre G, Galindez-Mayer J, Flores-Cotera LB (2010) A comparative study of taxol production in liquid and solid-state fermentation with Nigrospora sp. a fungus isolated from Taxus globosa. J Appl Microbiol 109:2144–2150

    Article  CAS  PubMed  Google Scholar 

  • Soliman SSM, Tsao R, Raizada MN (2011) Chemical inhibitors suggest endophytic fungal paclitaxel is derived from both mevalonate and non-mevalonate-like pathways. J Nat Prod 74:2497–2504

    Article  CAS  PubMed  Google Scholar 

  • Somjaipeng S, Medina A, Kwasna H, Ortiz JO, Magan N (2015) Isolation, identification, and ecology of growth and taxol production by an endophytic strain of Paraconiothyrium variabile from English yew trees (Taxus baccata). Fungal Biol 119:1022–1031

    Article  CAS  PubMed  Google Scholar 

  • Sonaimuthu V, Krishnamoorthy S, Johnpaul M (2010) Optimization of process parameters for improved production of taxol by a novel endophytic fungus Pestalotiopsis oxyanthi SVJM060 isolated from Taxus baccata. J Biotechnol 150S:S1–S576

    Google Scholar 

  • Sreekanth D, Sushim GK, Syed A, Khan BM, Ahmad A (2011) Molecular and morphological characterization of a taxol-producing endophytic fungus, Gliocladium sp., from Taxus baccata. Mycobiology 39:151–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stierle A, Strobel G, Stierle D (1993) Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Science 260:214–216

    Article  CAS  PubMed  Google Scholar 

  • Strobel GA, Yang X, Sears J, Kramer R, Sidhu R, Hess WM (1996a) Taxol from Pestalotiopsis microspora, an endophytic fungus of Taxus wallichiana. Microbiology 142:435–440

    Article  CAS  PubMed  Google Scholar 

  • Strobel GA, Hess WM, Ford E, Sidhu RS, Yang X (1996b) Taxol from fungal endophytes and the issue of biodiversity. J Ind Microbiol 17:417–423

    Article  CAS  Google Scholar 

  • Sun D, Ran X, Wang J (2008) Isolation and identification of a taxol-producing endophytic fungus from Podocarpus. Acta Microbiol Sin 48:589–595

  • Tian R, Yang Q, Zhou G, Tan J, Zhang L, Fang C (2006) Taxonomic study on a taxol producing fungus isolated from bark of Taxus chinensis var. mairei. J Wuhan Bota Res J 24:541–545

  • Van de Loosdrecht AA, Beelen RH, Ossenkoppele GJ, Broekhoven MG, Langenhuijsen MM (1994) A tetrazolium-based colorimetric MTT assay to quantitate human monocyte mediated cytotoxicity against leukemic cells from cell lines and patients with acute myeloid leukemia. J Immunol Methods 174:311–320

    Article  PubMed  Google Scholar 

  • Wang W, Kusari S, Spiteller M (2016) Unraveling the chemical interactions of fungal endophytes for exploitation as microbial factories. In: Purchase D (ed) Fungal applications in sustainable environmental biotechnology, fungal biology. Springer International Publishing, Switzerland

    Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, San Diego, pp 315–322

    Google Scholar 

  • Xu F, Tao W, Cheng L, Guo L (2006) Strain improvement and optimization of the media of taxol-producing fungus Fusarium maire. Biochem Eng J 31:67–73

    Article  CAS  Google Scholar 

  • Yeung TK, Germond C, Chen X, Wang Z (1999) The mode of action of taxol: apoptosis at low concentration and necrosis at high concentration. Biochem Biophys Res Commun 263:398–404

  • Yukimune Y, Tabata H, Higashi Y, Hara Y (1996) Methyl jasmonate-induced overproduction of paclitaxel and baccatin III in Taxus cell suspension cultures. Nat Biotechnol 14:1129–1132

    Article  CAS  PubMed  Google Scholar 

  • Zhang B, Maiti A, Shively S, Lakhani F, McDonald-Jones G, Bruce J, Lee EB, Xie SX, Joyce S, Li C, Toleikis PM, Lee VM, Trojanowski JQ (2005) Microtubule-binding drugs offset tau sequestration by stabilizing microtubules and reversing fast axonal transport deficits in a tauopathy model. Proc Natl Acad Sci USA 102:227–231

  • Zhang P, Zhou PP, Yu LJ (2009) An endophytic taxol-producing fungus from Taxus x media, Aspergillus candidus MD3. FEMS Microbiol Lett 293:155–159

    Article  CAS  PubMed  Google Scholar 

  • Zhao K, Ping W, Li Q, Hao S, Zhao L, Gao T, Zhou D (2009) Aspergillus niger var. taxi, a new species variant of taxol-producing fungus isolated from Taxus cuspidata in China. J Appl Microbiol 107:1202–1207

  • Zhao K, Li Z, Ge N, Li X, Wang X, Zhou D (2011) Investigation of fermentation conditions and optimization of medium for taxol production from taxol-producing fungi. J Med Plant Res 5:6528–6535

  • Zhou X, Zhu H, Liu L, Lin J, Tang K (2010) A review: recent advances and future prospects of taxol-producing endophytic fungi. Appl Microbiol Biotechnol 86:1707–1717

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the staff members of Central Laboratories of Isotopes Applications Division, Nuclear Research Center, Atomic Energy Authority, Cairo, Egypt, for excellent technical assistance in performing HPLC analysis. This work was supported in part by the Nuclear Research Center, Atomic Energy Authority, Cairo, Egypt.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed A. Ismaiel.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by the authors.

Electronic supplementary material

ESM 1

(PDF 493 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ismaiel, A.A., Ahmed, A.S., Hassan, I.A. et al. Production of paclitaxel with anticancer activity by two local fungal endophytes, Aspergillus fumigatus and Alternaria tenuissima . Appl Microbiol Biotechnol 101, 5831–5846 (2017). https://doi.org/10.1007/s00253-017-8354-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-017-8354-x

Keywords

Navigation