Skip to main content

Advertisement

Log in

Inoculation of a phenanthrene-degrading endophytic bacterium reduces the phenanthrene level and alters the bacterial community structure in wheat

  • Environmental biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Colonization by polycyclic aromatic hydrocarbon (PAH)-degrading endophytic bacteria (PAHDEB) can reduce the PAH contamination risk in plant. However, little information is available on the impact of PAHDEB colonization on the endophytic bacterial community of inner plant tissues. A phenanthrene-degrading endophytic bacterium (PDEB), Massilia sp. Pn2, was inoculated onto the roots of wheat and subjected to greenhouse container experiments. The endophytic bacterial community structure in wheat was investigated using high-throughput sequencing technology. The majority of endophytic bacteria in wheat were Proteobacteria, and the dominant genus was Pseudomonas. Phenanthrene contamination clearly increased the diversity of endophytic bacteria in wheat. The cultivable endophytic bacteria counts in wheat decreased with increasing the level of phenanthrene contamination; the endophytic bacterial community structure changed correspondingly, and the bacterial richness first increased and then decreased. Inoculation of strain Pn2 reduced the phenanthrene contamination in wheat, enlarged the biomass of wheat roots, changed the bacterial community structure and enhanced the cell counts, diversity and richness of endophytic bacteria in phenanthrene-contaminated wheat in a contamination level-dependent manner. The findings of this investigation provide insight into the responses of endophytic bacterial community in plant to external PAH contamination and PAHDEB colonization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Afzal M, Khan QM, Sessitsch A (2014) Endophytic bacteria: prospects and applications for the phytoremediation of organic pollutants. Chemosphere 117:232–242

    Article  CAS  PubMed  Google Scholar 

  • Ahmed AS, Sánchez CP, Candela ME (2000) Evaluation of induction of systemic resistance in pepper plants (Capsicum annuum) to Phytophthora capsici using Trichoderma harzianum and its relation with capsidiol accumulation. Eur J Plant Pathol 106:817–824

    Article  Google Scholar 

  • Amato KR, Yeoman CJ, Kent A, Righini N, Carbonero F, Estrada A, Gaskins HR, Stumpf RM, Yildirim S, Torralba M, Gillis M, Wilson BA, Nelson KE, White BA, Leigh SR (2013) Habitat degradation impacts black howler monkey (Alouatta pigra) gastrointestinal microbiomes. The ISME J 7:1344–1353

    Article  CAS  PubMed  Google Scholar 

  • Araújo WL, Marcon J, Maccheroni W, Elsas JD, Vuurde JW, Azevedo JL (2002) Diversity of endophytic bacterial populations and their interaction with Xylella fastidiosa in citrus plants. Appl Environ Microbiol l68:4906–4914

    Article  Google Scholar 

  • Campbell BJ, Polson SW, Hanson TE, Mack MC, Schuur EA (2010) The effect of nutrient deposition on bacterial communities in Arctic tundra soil. Environ Microbiol 12:1842–1854

    Article  CAS  PubMed  Google Scholar 

  • Cheema SA, Khana MI, Shen C, Tang X, Farooq M, Chen L, Zhang C, Chen Y (2010) Degradation of phenanthrene and pyrene in spiked soils by single and combined plants cultivation. J Hazard Mater 177:384–389

    Article  CAS  PubMed  Google Scholar 

  • Chelius MK, Triplett EW (2001) The diversity of Archaea and Bacteria in association with the roots of Zea mays L. Microb Ecol 41:252–263

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Boutros PC (2011) VennDiagram: a package for the generation of highly-customizable Venn and Euler diagrams in R. BMC Bioinformatics 12(1):35

    Article  PubMed  PubMed Central  Google Scholar 

  • Collins CD, Fryer M, Grosso A (2006) Plant uptake of non-ionic organic chemicals. Environ Sci Technol 40:45–52

    Article  CAS  PubMed  Google Scholar 

  • Compant S, Clement C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42:669–678

    Article  CAS  Google Scholar 

  • Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461

    Article  CAS  PubMed  Google Scholar 

  • Gao YZ, Zhu LZ (2004) Plant uptake, accumulation and translocation of phenanthrene and pyrene in soils. Chemosphere 55:1169–1178

    Article  CAS  PubMed  Google Scholar 

  • Gao YZ, Zhang Y, Liu J, Kong HL (2013) Metabolism and subcellular distribution of anthracene in tall fescue (Festuca arundinacea Schreb.) Plant Soil 365:171–182

    Article  CAS  Google Scholar 

  • Gao YZ, Hu XJ, Zhou ZY, Zhang W, Wang YZ, Sun BQ (2017) Phytoavailability and mechanism of bound PAH residues in filed contaminated soils. Environ Pollut. doi:10.1016/j.envpol.2016.11.076

    Google Scholar 

  • Garbeva P, Overbeek VL, Vuurde VJ, Elsas VJ (2001) Analysis of endophytic bacterial communities of potato by plating and denaturing gradient gel electrophoresis (DGGE) of 16S rDNA based PCR fragments. Microb Ecol 41:369–383

    Article  CAS  PubMed  Google Scholar 

  • Gardner JM, Feldman AW, Zablotowicz M (1982) Identity and behavior of xylem-residing bacteria in rough lemon roots of Florida citrus trees. Appl Environ Microbiol 43:1335–1342

    CAS  PubMed  PubMed Central  Google Scholar 

  • Germaine KJ, Keogh E, Ryan D, Dowling DN (2009) Bacterial endophyte-mediated naphthalene phytoprotection and phytoremediation. FEMS Microbiol Lett 296:226–234

    Article  CAS  PubMed  Google Scholar 

  • Glick BR (2003) Phytoremediation: synergistic use of plants and bacteria to clean up the environment. Biotechnol Adv 21:383–393

    Article  CAS  PubMed  Google Scholar 

  • Gotelli NJ, Colwell RK (2011) Estimating species richness. In: Magurran AE, McGill BJ (eds) Biological diversity: frontiers in measurement and assessment. Oxford University Press, Oxford, pp 39–54

    Google Scholar 

  • Hallmann J, Quadt-Hallmann A, Mahafee WF, Kloepper JW (1997) Bacterial endophytes in agricultural crops. Can J Microbiol 43:895–914

    Article  CAS  Google Scholar 

  • Harish S, Kavino M, Kumar N, Saravanakumar D, Soorianathasundaram K, Samiyappan R (2008) Biohardening with plant growth promoting rhizosphere and endophytic bacteria induces systemic resistance against banana bunchy top virus. Appl Soil Ecol 39:187–200

    Article  Google Scholar 

  • Ho YN, Shih CH, Hsiao SC, Huang CC (2009) A novel endophytic bacterium, Achromobacter xylosoxidans, helps plants against pollutant stress and improves phytoremediation. J Biosci Bioeng 108:S75–S95

    Article  Google Scholar 

  • Hung PQ, Annapurna K (2004) Isolation and characterization of endophytic bacteria in soybean (Glycine sp.) Omonrice 12:92–101

    Google Scholar 

  • Huse SM, Dethlefsen L, Huber JA, Mark WD, Relman DA, Sogin ML (2008) Exploring microbial diversity and taxonomy using SSU rRNA hypervariable tag sequencing. PLoS Genet 4:e1000255

    Article  PubMed  PubMed Central  Google Scholar 

  • Hwang S, Cutright TJ (2002) Biodegradability of aged pyrene and phenanthrene in a natural soil. Chemosphere 47:891–899

    Article  CAS  PubMed  Google Scholar 

  • Johnsen AR, Wick LY, Harms H (2005) Principles of microbial PAH-degradation in soil. Environ Pollut 133:71–84

    Article  CAS  PubMed  Google Scholar 

  • Khan Z, Doty S (2011) Endophyte-assisted phytoremediation. Curr Top Plant Biol 12:97–105

    Google Scholar 

  • Khan Z, Roman D, Kintz T, delas Alas M, Yap R, Doty S (2014) Degradation, phytoprotection and phytoremediation of phenanthrene by endophyte Pseudomonas putida, PD1. Environ Sci Technol 48:12221–12228

    Article  CAS  PubMed  Google Scholar 

  • Kim KH, Jahan SA, Kabir E, Brown RJ (2013) A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects. Environ Inter 60:71–80

    Article  CAS  Google Scholar 

  • Liengme BV (2015) Guide to Microsoft Excel 2013 for scientists and engineers. Academic Press, London

    Google Scholar 

  • Liu J, Liu S, Sun K, Sheng YH, Gu YJ, Gao YZ (2014) Colonization on root surface by a phenanthrene-degrading endophytic bacterium and its application for reducing plant phenanthrene contamination. PLoS One 9:e108249

    Article  PubMed  PubMed Central  Google Scholar 

  • Lodewyckx C, Vangronsveld J, Porteous F, Moore ER, Taghavi S, Mezgeay M, der Lelie DV (2002) Endophytic bacteria and their potential applications. Crit Rev Plant Sci 21:583–606

    Article  Google Scholar 

  • Lozupone C, Lladser ME, Knights D, Stombaugh J, Knight R (2011) UniFrac: an effective distance metric for microbial community comparison. ISME J 5:169

    Article  PubMed  Google Scholar 

  • Ministry of Environmental Protection and Ministry of Land and Resource of the People’s Republic of China (MEP and MLR) (2014) The bulletin of nationwide soil pollution status survey April 14. Index No. 000014672/2014–00351

  • Moore FP, Barac T, Borremans B, Oeyen L, Vangronsveld J, van der Lelie D, Campbell CD, Moore ER (2006) Endophytic bacterial diversity in poplar trees growing on a BTEX-contaminated site: the characterisation of isolates with potential to enhance phytoremediation. Syst Appl Microbiol 29:539–556

    Article  CAS  PubMed  Google Scholar 

  • Morrissey JP, Dow JM, Mark GL (2004) Are microbes at the root of a solution to world food production? EMBO Rep 5:922–926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oliveira V, Gomes N, Almeida A, Silva A, Simões MM, Smalla K, Cunha  (2014) Hydrocarbon contamination and plant species determine the phylogenetic and functional diversity of endophytic degrading bacteria. Mol Ecol 23:1392–1404

    Article  CAS  PubMed  Google Scholar 

  • Peng A, Liu J, Gao YZ, Chen ZY (2013) Distribution of endophytic bacteria in Alopecurus aequalis Sobol and Oxalis corniculata L. from soils contaminated by polycyclic aromatic hydrocarbons. PLoS One 8:e83054

    Article  PubMed  PubMed Central  Google Scholar 

  • Phillips LA, Germida JJ, Farrell RE (2008) Hydrocarbon degradation potential and activity of endophytic bacteria associated with prairie plants. Soil Biol Biochem 40:3054–3064

    Article  CAS  Google Scholar 

  • Qing W, Zhao X, Zhao SY (2006) Application of PCR-DGGE in research of bacterial diversity in drinking water. Biomed Environ Sci 19:371–374

    Google Scholar 

  • R Development Core Team (2013) R: a language and environment for statistical computing. Available on line at: http://www.r-project.org/

  • Rajkumar M, Ae N, Freitas H (2009) Endophytic bacteria and their potential to enhance heavy metal phytoextraction. Chemosphere 77:153–160

    Article  CAS  PubMed  Google Scholar 

  • Reysenbach A, Pace N (1995) Reliable amplification of hyperthermophilic archaeal 16S rRNA genes by the polymerase chain reaction. In: Robb F (ed) Archaea: a laboratory manual. Cold Spring Harbor Laboratory Press, New York, pp p101–p107

    Google Scholar 

  • Ryan RP, Germaine K, Franks A, Ryan DJ, Dowling DN (2008) Bacterial endophytes: recent developments and applications. FEMS Microbiol Lett 278:1–9

    Article  CAS  PubMed  Google Scholar 

  • Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Sahl JW (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheng XF, Gong JX (2006) Increased degradation of phenanthrene in soil by Pseudomonas sp. GF3 in the presence of wheat. Soil Biol Biochem 38:2587–2592

    Article  CAS  Google Scholar 

  • Siciliano SD, Fortin N, Mihoc A, Wisse G, Labelle S, Beaumier D, Schwab P (2001) Selection of specific endophytic bacterial genotypes by plants in response to soil contamination. Appl Environ Microbiol 67:2469–2475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sobral JK, Araujo WL, Mendes R, Kleiner AAP, Joao LA (2005) Isolation and characterization of endophytic bacteria from soybean (Glycine max) grown in soil treated with glyphosate herbicide. Plant Soil 273:91–99

    Article  Google Scholar 

  • Spellerberg IF (2008) Shannon–Wiener index. Lincoln University Press, Lincoln, pp 3249–3252

    Google Scholar 

  • Sun L, Qiu F, Zhang X, Dai X, Dong X, Song W (2008) Endophytic bacterial diversity in rice (Oryza sativa L.) roots estimated by 16S rDNA sequence analysis. Microb Ecol 55:415–424

    Article  CAS  PubMed  Google Scholar 

  • Sun K, Liu J, Jin L, Gao YZ (2014) Utilizing pyrene-degrading endophytic bacteria to reduce the risk of plant pyrene contamination. Plant Soil 374:251–262

    Article  CAS  Google Scholar 

  • Tanprasert P, Reed BM (1997) Detection and identification of bacterial contaminants from strawberry runner explants. In Vitro Cell Dev Biol 33:221–226

    Article  Google Scholar 

  • Weyens N, van der Lelie D, Taghavi S, Newman L, Vangronsveld J (2009a) Exploiting plant-microbe partnerships to improve biomass production and remediation. Trends Biotechnol 27:591–598

    Article  CAS  PubMed  Google Scholar 

  • Weyens N, van der Lelie D, Taghavi S, Vangronsveld J (2009b) Phytoremediation: plant-endophyte partnerships take the challenge. Curr Opin Biotechnol 20:248–254

    Article  CAS  PubMed  Google Scholar 

  • Xie WY, Su JQ, Zhu YG (2015) Phyllosphere bacterial community of floating macrophytes in paddy soil environments as revealed by Illumina high-throughput sequencing. Appl Environ Microbiol 81:522–532

    Article  PubMed  PubMed Central  Google Scholar 

  • Yaws CL (1999) Chemical properties handbook. McGraw-Hill, New York

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Major State Basic Research Development Program of China (973 Program, 2015CB150505), the Fundamental Research Funds for the Central Universities (KYZ201516), the Natural Science Foundation of Jiangsu Province (BK20161454), the Special Fund for Agro-Scientific Research in Public Interest, China (201503107) and a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanzheng Gao.

Ethics declarations

Ethical statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declared that they have no conflict of interest.

Additional information

Juan Liu and Yanbing Xiang contribute equality to this paper.

Electronic supplementary material

ESM 1

(PDF 420 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Xiang, Y., Zhang, Z. et al. Inoculation of a phenanthrene-degrading endophytic bacterium reduces the phenanthrene level and alters the bacterial community structure in wheat. Appl Microbiol Biotechnol 101, 5199–5212 (2017). https://doi.org/10.1007/s00253-017-8247-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-017-8247-z

Keywords

Navigation